Ejemplo n.º 1
0
def pearson_correlation(datadir,
                        outdir,
                        usemask=True,
                        excludef='',
                        exclude_idx=-1):

    slidir = datadir + os.path.sep + au.slices_str()

    subjsfile = datadir + os.path.sep + au.subjects_str()
    labelsfile = datadir + os.path.sep + au.labels_str()

    lst = os.listdir(slidir)
    n = au.count_match(lst, au.data_str() + '_' + au.slice_regex())

    exclude_log = ''
    if exclude_idx > -1:
        exclude_log = ' excluding subject ' + str(exclude_idx)

    au.log.info('Calculating correlation of ' + slidir + os.path.sep +
                au.data_str() + '_' + au.slice_regex() + exclude_log)

    for i in range(n):
        slino = au.zeropad(i)

        dataf = slidir + os.path.sep + au.data_str() + '_' + au.slice_str(
        ) + '_' + slino + au.ext_str()
        maskf = slidir + os.path.sep + au.mask_str() + '_' + au.slice_str(
        ) + '_' + slino + au.ext_str()
        outf = outdir + os.path.sep + au.pearson_str() + '_' + au.slice_str(
        ) + '_' + slino

        if exclude_idx > -1:
            outf += '_' + au.excluded_str() + str(exclude_idx) + au.ext_str()
        else:
            outf += au.ext_str()

        if not os.path.isfile(dataf):
            au.log.error('Could not find ' + dataf)
            continue

        if not usemask:
            maskf = ''

        try:
            measure_pearson(dataf, labelsfile, outf, maskf, excludef,
                            exclude_idx)
        except:
            au.log.error(
                'pearson_correlation: Error measuring correlation on ' + dataf)
            au.log.error("Unexpected error: ", sys.exc_info()[0])
            exit(1)
Ejemplo n.º 2
0
def pearson_correlation (datadir, outdir, usemask=True, excludef='', exclude_idx=-1):

   slidir = datadir + os.path.sep + au.slices_str()

   subjsfile  = datadir + os.path.sep + au.subjects_str()
   labelsfile = datadir + os.path.sep + au.labels_str()

   lst = os.listdir(slidir)
   n = au.count_match(lst, au.data_str() + '_' + au.slice_regex())

   exclude_log = ''
   if exclude_idx > -1:
      exclude_log = ' excluding subject ' + str(exclude_idx)
   
   au.log.info ('Calculating correlation of ' + slidir + os.path.sep + au.data_str() + '_' + au.slice_regex() + exclude_log)

   for i in range(n):
      slino = au.zeropad(i)

      dataf = slidir + os.path.sep + au.data_str()    + '_' + au.slice_str() + '_' + slino + au.ext_str()
      maskf = slidir + os.path.sep + au.mask_str()    + '_' + au.slice_str() + '_' + slino + au.ext_str()
      outf  = outdir + os.path.sep + au.pearson_str() + '_' + au.slice_str() + '_' + slino

      if exclude_idx > -1:
         outf += '_' + au.excluded_str() + str(exclude_idx) + au.ext_str()
      else:
         outf += au.ext_str()

      if not os.path.isfile(dataf): 
         au.log.error('Could not find ' + dataf)
         continue

      if not usemask:
         maskf = ''

      try:
         measure_pearson(dataf, labelsfile, outf, maskf, excludef, exclude_idx)
      except:
         au.log.error('pearson_correlation: Error measuring correlation on ' + dataf)
         au.log.error("Unexpected error: ", sys.exc_info()[0] )
         exit(1)
Ejemplo n.º 3
0
        if (excluf):
            outf_exclude = au.exclude_str()
            if expname:
                outf_exclude += '_' + expname
            if foldnumber:
                outf_exclude += '_' + foldnumber

            np.savetxt(outdir + os.path.sep + outf_exclude, excluded, fmt='%i')
            np.savetxt(mdir + os.path.sep + au.exclude_str(),
                       excluded,
                       fmt='%i')
            excluf = mdir + os.path.sep + au.exclude_str()

        step = au.maskmerging_str() + ' ' + measure_fname + ' ' + mdir
        if usemask and not au.is_done(chkf, step):
            maskregex = au.mask_str() + '_' + au.slice_str() + '*'
            post.merge_slices(slidir, maskregex, au.mask_str(), mdir, False)
            au.checklist_add(chkf, step)

        #CORRELATION
        #read the measure argument and start processing
        if measure == 'pea':
            #measure pearson correlation for each population slice
            step = au.measureperslice_str() + step_params
            if not au.is_done(chkf, step):
                pear.pearson_correlation(outdir, mdir, usemask, excluf, leave)
                au.checklist_add(chkf, step)

            #merge all correlation slice measures
            step = au.postmerging_str() + step_params
            if not au.is_done(chkf, step):
Ejemplo n.º 4
0
      #saving exclude files in mdir
      outf_exclude = ''
      if (excluf):
         outf_exclude = au.exclude_str()
         if expname:
            outf_exclude += '_' + expname
         if foldnumber:
            outf_exclude += '_' + foldnumber

         np.savetxt(outdir + os.path.sep + outf_exclude , excluded, fmt='%i')
         np.savetxt(mdir   + os.path.sep + au.exclude_str(), excluded, fmt='%i')
         excluf = mdir + os.path.sep + au.exclude_str()

      step = au.maskmerging_str() + ' ' + measure_fname + ' ' + mdir
      if usemask and not au.is_done(chkf, step):
         maskregex = au.mask_str() + '_' + au.slice_str() + '*'
         post.merge_slices (slidir, maskregex, au.mask_str(), mdir, False)
         au.checklist_add(chkf, step)

      #CORRELATION
      #read the measure argument and start processing
      if measure == 'pea':
         #measure pearson correlation for each population slice
         step = au.measureperslice_str() + step_params
         if not au.is_done(chkf, step):
            pear.pearson_correlation (outdir, mdir, usemask, excluf, leave)
            au.checklist_add(chkf, step)

         #merge all correlation slice measures
         step = au.postmerging_str() + step_params
         if not au.is_done(chkf, step):
Ejemplo n.º 5
0
def slice_and_merge (subsfname, labelsfname, checkfname, outdir='', maskfname='', outbase=''):

   check_data (subsfname, labelsfname, outdir, maskfname, outbase)

   nsubs = au.file_len(subsfname)
   nlabs = au.file_len(labelsfname)

   if not outdir:
      outdir = os.getcwd()

   slicesdir = outdir + os.path.sep + au.slices_str()
   tempdir = outdir + os.path.sep + au.temp_str()
   tmpdirlst = os.listdir(tempdir)

   fpath = ''
   olddir = os.getcwd()

   if not au.is_done (checkfname, au.preslicingdata_str()):
      #slicing subjects
      au.log.info ('Slicing all subjects: takes a while')
      subsfile = open(subsfname, 'r')
      for line in subsfile:
         fpath  = line.strip()
         isfile = os.path.basename(fpath)
         osfile = tempdir + os.path.sep + isfile

         #test if file has been sliced
         fdim3 = au.fslval(fpath, 'dim3')
         regex = au.remove_ext(isfile) + '*'
         nslices = au.count_match (tmpdirlst, regex)
         if fdim3 != nslices:
            #if not, then slice it in tempdir
            au.log.debug('Slicing ' + isfile)
            os.chdir (tempdir)

            shutil.copy (fpath, tempdir)
            au.fslslice (osfile)

            os.remove(osfile)
            os.chdir (olddir)
         else:
            au.log.debug(isfile + ' previously sliced')

      subsfile.close()
      au.checklist_add (checkfname, au.preslicingdata_str())

   if not au.is_done (checkfname, au.premergingdata_str()):
      #merging each slice
      if not outbase:
         outbase = au.data_str()

      if not fpath:
         subsfile = open(subsfname, 'r')
         for line in subsfile:
            fpath = line.strip()
            break

      au.log.info ('Merging all subject slices: takes a while')

      nslices  = int(au.fslval(fpath,'dim3'))
      for slice in range(nslices):
         slicezp = au.zeropad(slice)

         mergeout  = outbase + '_slice_' + slicezp
         outdata   = slicesdir + os.path.sep + mergeout
         #check if data file exists
         if not au.imtest(outdata):
            #if not, then create it, merging all the corresponding slices
            au.log.debug('Merging slice ' + slicezp)

            imglob   = ''
            subsfile = open(subsfname, 'r')
            for line in subsfile:
               fpath   = line.strip()
               isfile  = au.remove_ext(os.path.basename(fpath)).strip()
               isfile  = tempdir + os.path.sep + isfile + '_slice_' + slicezp
               imglob += isfile + ' '

            os.system('fslmerge -t ' + outdata + ' ' + imglob)

            for f in imglob.split():
               au.imrm(f)
         else:
            au.log.debug('Slice ' + slicezp + ' previously done')

         au.checklist_add (checkfname, au.premergingdata_str())

   #slicing mask
   if maskfname:
      if os.path.exists(maskfname) and not au.is_done (checkfname, au.preslicingmask_str()):
         au.log.info('Slicing mask ' + maskfname)

         au.imcp (maskfname, slicesdir + os.path.sep + au.mask_str())
         os.chdir (slicesdir)
         au.fslslice (au.mask_str())
         au.imrm     (au.mask_str())

         au.checklist_add (checkfname, au.preslicingmask_str())
         os.chdir (olddir)

   au.log.debug('Done preprocessing')