def _tan_2x_multi(input_x, times): """calculating tan x by calculating tan (x/2^times) and using double angle formula multiple times""" # Calculate tan (x/2^times) if input_x.dtype == FLOAT_16 and utils.product_is_mini(): input_x_divide = topi.multiply(input_x, tvm.const(1.0/(2.0**times), FLOAT_16)) res = _tan_expand(input_x_divide) else: input_x_divide = topi.multiply(input_x, 1.0/(2.0**times)) res = _tan_expand(input_x_divide) while times != 0: # using double angle formula: tan 2x = 2*tan x/(1-tan x*tan x) if input_x.dtype == FLOAT_16 and utils.product_is_mini(): res_numerator = topi.multiply(res, tvm.const(2.0, FLOAT_16)) tanx_square = topi.multiply(res, res) res_denominator = topi.add(topi.multiply(tanx_square, tvm.const(-1.0, FLOAT_16)), tvm.const(1.0, FLOAT_16)) else: res_numerator = topi.multiply(res, 2.0) tanx_square = topi.multiply(res, res) res_denominator = topi.add(topi.multiply(tanx_square, -1.0), 1.0) if utils.product_is_mini(): res = mul(res_numerator, reciprocal(res_denominator)) else: res = div(res_numerator, res_denominator) times = times - 1 return res
def softmax_cross_entropy_with_logits(labels, logits, axis, reduction="mean", scale=1.0): max_logits = reduce_max(logits, axis, keepdims=True, target=utils.CCE) data_sub = sub(logits, max_logits, target=utils.CCE) akg.register_variables("minus_max", [logits], data_sub) data_exp = Exp(data_sub, target=utils.CCE) data_expsum = sum(data_exp, axis, keepdims=True, target=utils.CCE) data_expsum_log = log(data_expsum, target=utils.CCE) sub_value = sub(data_sub, data_expsum_log, target=utils.CCE) neg_labels = neg(labels, target=utils.CCE) cross_entropy = mul(neg_labels, sub_value, target=utils.CCE) # backprop: prob - labels, where prob = softmax(logits) prob = Exp(sub_value, target=utils.CCE) backprop = sub(prob, labels, target=utils.CCE) if reduction.lower() == "none": loss = sum_v2(cross_entropy, axis, keepdims=True) elif reduction.lower() == "mean": loss = sum_v2(cross_entropy, axis=None) factor = logits.shape[0].value loss = loss * akg.tvm.const(1 / factor, logits.dtype) backprop = backprop * akg.tvm.const(1 / factor, logits.dtype) elif reduction.lower() == "sum": loss = sum_v2(cross_entropy, axis=None) else: raise ValueError( "reduction method {0} is not supported".format(reduction)) backprop = akg.topi.multiply(backprop, akg.tvm.const(scale, backprop.dtype)) return loss, backprop
def _bessel_i1e_compute(input_data): """bessel i1e compute""" shape = vc_util.get_shape(input_data) dtype = input_data.dtype # chose the type of data in begin if dtype == "float16": input_data = cast(input_data, "float32") abs_data = abs_value(input_data) # compute bessel_i1e for data in (-3.75, 3.75) before_res = _before_res_compute(abs_data) # compute bessel_i1e for data in other domain after_res = _after_res_compute(abs_data) # As vcmp_lt and vsel instruction don't support fp32 on mini # It can be simplified by some methods, such as , "auto cast" if utils.product_is_mini(): res = akg.tvm.compute( shape, lambda *indice: akg.tvm.expr.Select( abs_data[indice].astype("float16") < akg.tvm.const( CONST_LIMIT, "float16"), before_res[indice].astype( "float16"), after_res[indice].astype("float16"))) res = cast(res, "float32") else: res = akg.tvm.compute( shape, lambda *indice: akg.tvm.expr.Select(abs_data[ indice] < CONST_LIMIT, before_res[indice], after_res[indice])) data_sign = sign(input_data) res = mul(res, data_sign) if dtype == "float16": res = cast(res, "float16") return res
def mul_unsortedsegmentsum(input1, input2, ids_tensor, num_segments): import akg.tvm temp = mul.mul(input1, input2) output = unsortedsegmentsum.unsortedsegmentsum(temp, ids_tensor, num_segments)[0] output = akg.tvm.compute(output.shape, lambda *i: output(*i), "fused_mul_unsorted") return output
def Mul(x, x_shape, y, y_shape, data_format=None): """mul""" if data_format: x_new = broadcast_by_format(x, x_shape, data_format[0], y_shape) y_new = broadcast_by_format(y, y_shape, data_format[1], x_shape) else: x_new = x y_new = y return mul.mul(x_new, y_new)
def _after_res_compute(abs_data): """ compute bessel_i1e for abs value of data greater than or equal to 3.75 Algrithm: t = 3.75 / x I1(x) = (1 / sqrt(x))*(0.39894228 - 0.03988024t - 0.00362018t^2 + 0.00163801t^3 - 0.01031555t^4 + 0.02282967t^5 - 0.02895312t^6 + 0.01787654t^7 - 0.00420059t^8) """ broad_const_limit = akg.lang.cce.broadcast( akg.tvm.const(CONST_LIMIT, abs_data.dtype), abs_data.shape) data = div(broad_const_limit, abs_data) after_res = topi.multiply(data, ITR_AFTER[LEN_AFTER - 1]) after_res = topi.add(after_res, ITR_AFTER[LEN_AFTER - 2]) for iter_number in ITR_AFTER[LEN_AFTER - 3::-1]: after_res = mul(after_res, data) after_res = topi.add(after_res, iter_number) abs_data_rsqrt = rsqrt(abs_data) after_res = mul(after_res, abs_data_rsqrt) return after_res
def _before_res_compute(abs_data): """ compute bessel_i1e for abs value of data less than or equal to 3.75 Algrithm: t = x / 3.75 I1(x) = e^-|x|*x*(0.5 + 0.87890594t^2 + 0.51498869t^4 + 0.15084934t^6 + 0.02658773t^8 + 0.00301532t^10 + 0.00032411t^12) """ data = topi.multiply(abs_data, 1.0 / CONST_LIMIT) data_square = mul(data, data) before_res = topi.multiply(data_square, ITR_BEFORE[LEN_BEFORE - 1]) before_res = topi.add(before_res, ITR_BEFORE[LEN_BEFORE - 2]) for iter_number in ITR_BEFORE[LEN_BEFORE - 3::-1]: before_res = mul(before_res, data_square) before_res = topi.add(before_res, iter_number) exp_value = exp(neg(abs_data)) before_res = mul(before_res, exp_value) before_res = mul(before_res, abs_data) return before_res
def sigmoid_cross_entropy_with_logits(labels=None, logits=None): ## # \brief Computes sigmoid cross entropy given `logits`. # # \f[ # cost = lables * -log(sigmoid(logits)) + (1 - lables) * -log(1 - sigmoid(logits)) # \f] # \param labels akg.tvm.Tensor of the same type and shape as `logits`. # \param logits akg.tvm.Tensor of type float16, float32 # # \return akg.tvm.Tensor of the same shape as `logits` with the componentwise logistic losses. ## if get_shape(logits) != get_shape(labels): raise ValueError( "logits and labels must have the same shape (%s vs %s)" % (get_shape(logits), get_shape(labels))) if logits.dtype != labels.dtype: raise ValueError( "logits and labels must have the same dtype (%s vs %s)" % (logits.dtype, labels.dtype)) shape = logits.shape dtype = logits.dtype check_list = ["float16", "float32"] if not (dtype.lower() in check_list): raise RuntimeError( "sigmoid_cross_entropy_with_logits only support %s while dtype is %s" % (",".join(check_list), dtype)) # z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) # = z * -log(1 / (1 + exp(-x))) + (1 - z) * -log(exp(-x) / (1 + exp(-x))) # = max(x, 0) - x * z + log(1 + exp(-abs(x))) zero = akg.tvm.const(0, dtype=dtype) relu_logits = akg.tvm.compute( shape, lambda *indice: akg.tvm.expr.Select( logits(*indice) < zero, zero, logits(*indice)), name="relu_logits") neg_abs_logits = akg.tvm.compute( shape, lambda *indice: akg.tvm.expr.Select( logits(*indice) < zero, logits(*indice), logits(*indice) * -1), name="neg_abs_logits") sigmoid_logits = exp(neg_abs_logits) + akg.tvm.const(1, dtype=dtype) ln_sigmoid_logits = log(sigmoid_logits) logits_mul_lables = mul(logits, labels) res = relu_logits - logits_mul_lables + ln_sigmoid_logits return res
def mul_conv(data, fmap_shape, filter_shape, pad_, stride_, dilation_, bypass_l1=False, use_bias=False, block_size=16, attrs=None): a1 = data[0] a2 = data[1] b = data[2] a = mul.mul(data[0], data[1]) if use_bias: conv_data = [a, b, data[3]] else: conv_data = [a, b] res = conv.conv(conv_data, fmap_shape, filter_shape, pad_, stride_, dilation_, use_bias, block_size, attrs) return res
def fake_quant_with_min_max_vars_per_channel_compute(input_data, input_min, input_max, num_bits=8, narrow_range=False): """fake_quant_with_min_max_vars_per_channel compute implemention""" shape = get_shape(input_data.shape) dtype = input_data.dtype min_broadcast = akg.lang.cce.broadcast(input_min, shape, dtype) max_broadcast = akg.lang.cce.broadcast(input_max, shape, dtype) # get nudged_min and nudged_max by nudged_min_max_compute function nudged_min_nudged_max = nudged_min_max_compute(min_broadcast, max_broadcast, num_bits, narrow_range) # transform the input between nudged_max and nudged_min clamped_tmp = topi.minimum(input_data, nudged_min_nudged_max[1]) clamped = topi.maximum(clamped_tmp, nudged_min_nudged_max[0]) # calculate the quantized and dequantized results clamped_shifted = topi.subtract(clamped, nudged_min_nudged_max[0]) if utils.product_is_mini(): clamped_shifted_div_scale = mul(clamped_shifted, reciprocal(nudged_min_nudged_max[2])) else: clamped_shifted_div_scale = div(clamped_shifted, nudged_min_nudged_max[2]) result_tmp = topi.add(clamped_shifted_div_scale, dc.half_const(dtype)) floor_result_tmp = akg.lang.cce.floor(result_tmp) if utils.product_is_mini(): floor_result_tmp = topi.cast(floor_result_tmp, "float16") floor_result_tmp = topi.cast(floor_result_tmp, "float32") scale_product = topi.multiply(floor_result_tmp, nudged_min_nudged_max[2]) tmp_res = topi.add(scale_product, nudged_min_nudged_max[0]) # get bool_both_zero_value by bool_both_zero_compute function bool_both_zero_value = bool_both_zero_compute(min_broadcast, max_broadcast) res = topi.multiply(tmp_res, bool_both_zero_value) return res
def mean_mul(first_input, second_input, axis=None, keepdims=False): temp, _ = mean.mean(first_input, axis, keepdims) output = mul.mul(temp, second_input) return output
def mul_mean(first_input, second_input, axis=None, keepdims=False): temp = mul.mul(first_input, second_input) output, _ = mean.mean(temp, axis, keepdims) return output
def mul_sub_mutioutput(first_input, second_input, third_input): temp = mul.mul(first_input, second_input) output = sub.sub(temp, third_input) return [temp, output]
def nudged_min_max_compute(min_broadcast, max_broadcast, num_bits, narrow_range): """ Calculate the maximum and minimum values of the quantization. Notes: Each channel scale[i] euqal to (max_broadcast[i] - min_broadcast[i]) / (quant_max - quant_min). Then compute nudged_zero_point: nudged_zero_point = floor(between_min_max_float + 0.5) + less_quant_min_float + more_quant_max_float, between_min_max_float is first calculated by: zero_point_from_min = (quant_min_float - min_broadcast) / scale, then between_min_max_float = zero_point_from_min, which min_broadcast <= zero_point_from_min <= max_broadcast. Besides, the value of less_quant_min_float is equal to quant_min or zero, zero_point_from_min < quant_min_float, the value is quant_min, else is 0. The same as more_quant_max_float. Finally according to scale and nudged_zero_point to compute nudged_min and nudged_max: nudged_min = (quant_min - nudged_zero_point) * scale nudged_max = (quant_max - nudged_zero_point) * scale Args: min_broadcast (tvm.tensor.Tensor): minimum value to be quantified for each channel. max_broadcast (tvm.tensor.Tensor): maximum value to be quantified for each channel. num_bits (int): num_bits is the bitwidth of the quantization, range [2,16]. narrow_range (bool): if True, for each channel, quantized into the quantization range [0, 2^num_bits - 1] else quantized into the quantization range [1, 2^num_bits - 1]. Returns: nudged_min (tvm.tensor.Tensor): The same type and shape as min_broadcast. nudged_max (tvm.tensor.Tensor): The same type and shape as max_broadcast. scale (tvm.tensor.Tensor): The same type and shape as max_broadcast. """ dtype = min_broadcast.dtype quant_min = 1 if narrow_range else 0 quant_max = (2**num_bits) - 1 # because of need compute each channel, so quant_min and quant_max need to broadcast. quant_min_float = topi.full(min_broadcast.shape, dtype, tvm.const(quant_min, dtype)) quant_max_float = topi.full(min_broadcast.shape, dtype, tvm.const(quant_max, dtype)) # caculate each channel max and min difference. max_sub_min = topi.subtract(max_broadcast, min_broadcast) quant_max_sub_quant_min = topi.subtract(quant_max_float, quant_min_float) # compute scale = (max_broadcast - min_broadcast) / (quant_max - quant_min) # and min_div_scale = min_broadcast / scale if utils.product_is_mini(): scale = mul(max_sub_min, reciprocal(quant_max_sub_quant_min)) min_div_scale = mul(min_broadcast, reciprocal(scale)) else: scale = div(max_sub_min, quant_max_sub_quant_min) min_div_scale = div(min_broadcast, scale) # zero_point_from_min = quant_min_float - min_broadcast / scale zero_point_from_min = topi.subtract(quant_min_float, min_div_scale) # if zero_point_from_min < quant_min_float, bool_less_quant_min_float = 1 else 0 bool_less_quant_min_float = less_compare_float32(zero_point_from_min, quant_min_float) # if quant_max_float < zero_point_from_min, bool_more_quant_max_float = 1 else 0 bool_more_quant_max_float = less_compare_float32(quant_max_float, zero_point_from_min) # according to above bool param to select effective value less_quant_min_float = topi.multiply(quant_min_float, bool_less_quant_min_float) more_quant_max_float = topi.multiply(quant_max_float, bool_more_quant_max_float) # compute which num is not less than quant_min_float and not large than quant_max_float tensor_one = topi.full(min_broadcast.shape, dtype, dc.one_const(dtype)) bool_not_less_quant_min_float = topi.subtract(tensor_one, bool_less_quant_min_float) bool_not_more_quant_max_float = topi.subtract(tensor_one, bool_more_quant_max_float) bool_between_min_max = topi.multiply(bool_not_less_quant_min_float, bool_not_more_quant_max_float) between_min_max_float = topi.multiply(zero_point_from_min, bool_between_min_max) # add 0.5 to num which min <= num <= max and then floor them. between_min_max_add_half_one = topi.add(between_min_max_float, dc.half_const(dtype)) between_min_max_round = akg.lang.cce.floor(between_min_max_add_half_one) if utils.product_is_mini(): between_min_max_round = topi.cast(between_min_max_round, "float16") between_min_max_round = topi.cast(between_min_max_round, "float32") # calculate the maximum and minimum values of the quantization nudged_zero_point_tmp = topi.add(less_quant_min_float, more_quant_max_float) nudged_zero_point = topi.add(nudged_zero_point_tmp, between_min_max_round) nudged_min_tmp = topi.subtract(quant_min_float, nudged_zero_point) nudged_max_tmp = topi.subtract(quant_max_float, nudged_zero_point) nudged_min = topi.multiply(nudged_min_tmp, scale) nudged_max = topi.multiply(nudged_max_tmp, scale) res = [nudged_min, nudged_max, scale] return res
def mul_ad(head, a, b): output = mul.mul(a, b) jacs_ = list(akg.differentiate(output, [a], head)) return jacs_[0]
def Mul(x, y): """mul.""" return mul.mul(x, y)
def mul_sub(first_input, second_input, third_input): temp = mul.mul(first_input, second_input) output = sub.sub(temp, third_input) return output