Ejemplo n.º 1
0
def get_train_augmentations(image_size: int = 224, mean: tuple = (0, 0, 0), std: tuple = (1, 1, 1)):
    return A.Compose(
        [
            # A.RandomBrightnessContrast(brightness_limit=32, contrast_limit=(0.5, 1.5)),
            # A.HueSaturationValue(hue_shift_limit=18, sat_shift_limit=(1, 2)),
            # A.CoarseDropout(20),
            A.Rotate(10),

            A.Resize(image_size, image_size),
            # A.RandomCrop(image_size, image_size, p=0.5),

            A.LongestMaxSize(image_size),
            # A.Equalize(mode='cv', by_channels=True, mask=None, always_apply=False, p=0.5),
            # A.Normalize(mean=mean, std=std),
            MinMaxScale(),
            A.HorizontalFlip(),
            A.PadIfNeeded(image_size, image_size, 0),
            # A.Transpose(),
            ToTensor(),
        ]
    )
Ejemplo n.º 2
0
    def _preprocess(self, x: np.ndarray, mask: Optional[np.ndarray]):
        x = albu.LongestMaxSize()(image=x)['image']
        x, _ = self.normalize_fn(x, x)
        if mask is None:
            mask = np.ones_like(x, dtype=np.float32)
        else:
            mask = np.round(mask.astype('float32') / 255)

        h, w, _ = x.shape
        block_size = 32
        min_height = (h // block_size + 1) * block_size
        min_width = (w // block_size + 1) * block_size

        pad_params = {'mode': 'constant',
                      'constant_values': 0,
                      'pad_width': ((0, min_height - h), (0, min_width - w), (0, 0))
                      }
        x = np.pad(x, **pad_params)
        mask = np.pad(mask, **pad_params)

        return map(self._array_to_batch, (x, mask)), h, w
def get_train_transform(image_size,
                        augmentation=None,
                        preprocessing=None,
                        crop_black=True):
    if augmentation is None:
        augmentation = 'none'

    artificial = augmentation.endswith('-art')
    if artificial:
        augmentation = augmentation.replace('-art', '')
        print('Using Artifical decease sings generation')

    LEVELS = {
        'none': get_none_augmentations,
        'light': get_light_augmentations,
        'medium': get_medium_augmentations,
        'hard': get_hard_augmentations,
        'hard2': get_hard_augmentations_v2
    }

    assert augmentation in LEVELS.keys()
    augmentation = LEVELS[augmentation](image_size)

    longest_size = max(image_size[0], image_size[1])
    return A.Compose([
        CropBlackRegions(tolerance=5) if crop_black else A.NoOp(
            always_apply=True),
        A.LongestMaxSize(longest_size, interpolation=cv2.INTER_CUBIC),

        # Fake decease generation
        A.Compose([AddMicroaneurisms(), AddCottonWools()],
                  p=float(artificial)),
        A.PadIfNeeded(image_size[0],
                      image_size[1],
                      border_mode=cv2.BORDER_CONSTANT,
                      value=0),
        augmentation,
        get_preprocessing_transform(preprocessing),
        A.Normalize()
    ])
Ejemplo n.º 4
0
def valid_albumentations_tfms_pets():
    """ Composes a Pipeline of Albumentations Transforms for PETS dataset at the train stage

    Returns:
        AlbumentationsTransform: Pipeline of Albumentations Transforms
    
    
    Examples::
        >>> valid_tfms = valid_albumentations_tfms_pets(train=false)
        >>> valid_ds = Dataset(valid_records, valid_tfms)

    [[https://albumentations.readthedocs.io/en/latest/_modules/albumentations/augmentations/transforms.html/|Albumentations Transforms ]]
    """
    import albumentations as A

    # ImageNet stats
    imagenet_mean, imagenet_std = IMAGENET_STATS

    return AlbuTransform([
        A.LongestMaxSize(384),
        A.Normalize(mean=imagenet_mean, std=imagenet_std)
    ])
Ejemplo n.º 5
0
 def __init__(self, opt):
     super(Dataset3D, self).__init__()
     self.opt = opt
     self.augs = A.Compose([
         A.LongestMaxSize(max(self.opt.input_h, self.opt.input_w), always_apply=True),
         A.PadIfNeeded(self.opt.input_h, self.opt.input_w, border_mode=cv2.BORDER_CONSTANT, value=[0, 0, 0]),
         A.Blur(blur_limit=(4, 8), p=0.1),
         # A.ShiftScaleRotate(shift_limit=0.2, scale_limit=(-0.4, 0.2), rotate_limit=0,
         #                    border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0), p=0.8),
         A.OneOf([
             A.RandomBrightnessContrast(always_apply=True),
             A.RandomGamma(gamma_limit=(60, 140), always_apply=True),
             # A.CLAHE(always_apply=True)
         ], p=0.5),
         A.OneOf([
             A.RGBShift(),
             A.HueSaturationValue(),
             A.ToGray()
         ], p=0.1)
     ],
         keypoint_params=A.KeypointParams(format='xy', remove_invisible=False)
     )
Ejemplo n.º 6
0
 def transform(self):
     return Compose([
         albu.LongestMaxSize(np.max(
             self.cfg.INSIGHTFACE.PREPROCESS.IMAGE_SIZE),
                             interpolation=cv2.INTER_LINEAR,
                             always_apply=False,
                             p=1),
         albu.PadIfNeeded(
             min_height=self.cfg.INSIGHTFACE.PREPROCESS.IMAGE_SIZE[0],
             min_width=self.cfg.INSIGHTFACE.PREPROCESS.IMAGE_SIZE[1],
             border_mode=cv2.BORDER_CONSTANT,
             value=0,
             mask_value=0,
             always_apply=False,
             p=1.0),
         ToTensor(num_classes=1,
                  sigmoid=False,
                  normalize={
                      'mean': self.cfg.INSIGHTFACE.PREPROCESS.MEAN,
                      'std': self.cfg.INSIGHTFACE.PREPROCESS.STD
                  })
     ])
Ejemplo n.º 7
0
def offline_da_fn(height, width, augment=True):
    da_transform = []

    if augment:
        da_transform += [
            # A.HorizontalFlip(p=0.5),
            A.ShiftScaleRotate(scale_limit=0.05, rotate_limit=7, shift_limit=0.05, border_mode=cv2.BORDER_CONSTANT,
                               p=1.0),
            A.Perspective(scale=(0.015, 0.025), p=0.3),
            A.RandomResizedCrop(height=height, width=width, scale=(0.95, 1.0), p=0.3),

            # A.OneOf(
            #     [
            #         A.CLAHE(p=1),
            #         A.RandomBrightness(p=1),
            #         A.RandomGamma(p=1),
            #         A.RandomContrast(limit=0.1, p=1.0),
            #     ],
            #     p=0.5,
            # ),
            #
            # A.OneOf(
            #     [
            #         A.Sharpen(alpha=(0.2, 0.5), lightness=(0.5, 1.0), p=1.0),
            #         A.Blur(blur_limit=[2, 3], p=1.0),
            #         A.GaussNoise(var_limit=(5, 25), p=1.0),
            #         # A.MotionBlur(blur_limit=3, p=1.0),
            #     ],
            #     p=0.5,
            # ),
            #
            # A.Lambda(image=_da_negative, p=0.2),
        ]

    da_transform += [
        A.LongestMaxSize(max_size=max(height, width), interpolation=cv2.INTER_LANCZOS4, always_apply=True),
        A.PadIfNeeded(min_height=height, min_width=width, border_mode=cv2.BORDER_CONSTANT, always_apply=True),
    ]
    return A.Compose(da_transform)
Ejemplo n.º 8
0
    def default_transform(self, mode="train"):
        if mode == "train":
            transform = A.Compose([
                A.Flip(0.5),
                A.ShiftScaleRotate(scale_limit=0.1, rotate_limit=45, p=0.25),
                A.LongestMaxSize(max_size=800, p=1.0),
                A.Normalize(mean=(0, 0, 0),
                            std=(1, 1, 1),
                            max_pixel_value=255.0,
                            p=1.0),
                ToTensorV2(p=1.0)
            ],
                                  bbox_params={
                                      'format': 'pascal_voc',
                                      'label_fields': ['labels']
                                  })
        elif mode == 'val':
            transform = A.Compose([
                A.Normalize(mean=(0, 0, 0),
                            std=(1, 1, 1),
                            max_pixel_value=255.0,
                            p=1.0),
                ToTensorV2(p=1.0)
            ],
                                  bbox_params={
                                      'format': 'pascal_voc',
                                      'label_fields': ['labels']
                                  })
        else:
            transform = A.Compose([
                A.Normalize(mean=(0, 0, 0),
                            std=(1, 1, 1),
                            max_pixel_value=255.0,
                            p=1.0),
                ToTensorV2(p=1.0)
            ])

        return transform
def test_fisheye_undistortion(image_fname):
    image = cv2.cvtColor(cv2.imread(image_fname), cv2.COLOR_RGB2BGR)

    transform = A.Compose([
        CropBlackRegions(),
        A.LongestMaxSize(512),
        A.PadIfNeeded(512, 512, border_mode=cv2.BORDER_CONSTANT)
    ])

    image = transform(image=image)['image']

    def update(*args, **kwargs):
        fx = cv2.getTrackbarPos('fx', 'Test')
        k = cv2.getTrackbarPos('k', 'Test')
        k_real = (k - 200) / 400

        print(fx, k_real)

        K = np.array([[fx, 0, 256], [0, fx, 256], [0, 0, 1]], dtype=np.float32)
        # D = np.array([-2.57614020e-01, 8.77086999e-02, -2.56970803e-04, -5.93390389e-04])
        D = np.array([
            [k_real],
            [k_real],
            [0],
            [0],
        ], dtype=np.float32)

        und = removeFisheyeLensDist(image, K, D, DIM=(768, 768))
        cv2.imshow('Test', und)
        # cv2.waitKey(1)

    cv2.namedWindow('Test')
    cv2.createTrackbar('fx', 'Test', 400, 1024, update)
    cv2.createTrackbar('k', 'Test', 200, 400, update)
    update()
    while cv2.waitKey(30) != 'q':
        pass
Ejemplo n.º 10
0
def run(json_path, savedir, size, ignore_small=True):
    data = get_data(json_path)
    transform = A.Compose([A.LongestMaxSize(size)])
    if not os.path.exists(savedir):
        os.makedirs(savedir)
    sizes = []
    for info in tqdm(data):
        filename = info['file_name']
        identifier = os.path.basename(filename).split("_")[0]
        height = info['height']
        width = info['width']
        image = cv2.imread(filename)
        for i, a in enumerate(info['annotations']):
            x, y, u, v = make_square(a['bbox'], height, width)
            # TODO: maybe save segmentation? and blur background
            selected_img = image[y:v, x:u].copy()
            if np.min(selected_img.shape[:2]) >= size:
                selected_img = transform(image=selected_img)['image']
            else:
                if ignore_small:
                    continue
            #sizes.append()
            sizes.append(np.min(selected_img.shape[:2]))

            savepath = os.path.join(savedir, f"{identifier}_{i}.png")
            # coords = []
            # for points in a['segmentation']:
            #     xx = [k-x for k in points[::2]]
            #     yy = [k-y for k in points[1::2]]
            #     p = np.stack([xx, yy], -1).astype('int32').reshape((1, -1, 2))
            #     #print(p.shape)
            #     #print(selected_img.dtype, selected_img.shape)
            #     cv2.fillPoly(selected_img, p, (255, 255, 255), 8)
            cv2.imwrite(savepath, selected_img)
        #print(filename)
        #return
    print(Counter(sizes))
 def __init__(self, max_size: int = 960, device: str = "cpu") -> None:
     self.model = RetinaFace(
         name="Resnet50",
         pretrained=False,
         return_layers={
             "layer2": 1,
             "layer3": 2,
             "layer4": 3
         },
         in_channels=256,
         out_channels=256,
     ).to(device)
     self.device = device
     self.transform = A.Compose(
         [A.LongestMaxSize(max_size=max_size, p=1),
          A.Normalize(p=1)])
     self.max_size = max_size
     self.prior_box = priorbox(
         min_sizes=[[16, 32], [64, 128], [256, 512]],
         steps=[8, 16, 32],
         clip=False,
         image_size=(self.max_size, self.max_size),
     ).to(device)
     self.variance = [0.1, 0.2]
Ejemplo n.º 12
0
def get_training_albumentations():
    train_transform = [
        albu.LongestMaxSize(244),
        albu.HorizontalFlip(),
        albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0),
        albu.PadIfNeeded(min_height=224, min_width=224, always_apply=True, border_mode=0),
        albu.RandomCrop(height=224, width=224, always_apply=True),
        albu.IAAAdditiveGaussianNoise(p=0.2),
        albu.IAAPerspective(p=0.5),
        albu.OneOf(
            [
                albu.CLAHE(p=1),
                albu.RandomBrightness(p=1),
                albu.RandomGamma(p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
                albu.IAASharpen(p=1),
                albu.Blur(blur_limit=3, p=1),
                albu.MotionBlur(blur_limit=3, p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
                albu.RandomContrast(p=1),
                albu.HueSaturationValue(p=1),
            ],
            p=0.9,
        ),
    ]
    return albu.Compose(train_transform)
Ejemplo n.º 13
0
def resize_transforms(image_size=224):
    BORDER_CONSTANT = 0
    pre_size = int(image_size * 1.5)

    random_crop = albu.Compose(
        [
            albu.SmallestMaxSize(pre_size, p=1),
            albu.RandomCrop(image_size, image_size, p=1),
        ]
    )

    rescale = albu.Compose([albu.Resize(image_size, image_size, p=1)])

    random_crop_big = albu.Compose(
        [
            albu.LongestMaxSize(pre_size, p=1),
            albu.RandomCrop(image_size, image_size, p=1),
        ]
    )

    # Converts the image to a square of size image_size x image_size
    result = [albu.OneOf([random_crop, rescale, random_crop_big], p=1)]

    return result
Ejemplo n.º 14
0
    def __getitem__(self, idx: int) -> Dict[str, Any]:
        image_path = self.file_names[idx]

        image = load_rgb(image_path)

        height, width = image.shape[:2]

        # Resize
        resizer = albu.Compose([albu.LongestMaxSize(max_size=768, p=1)], p=1)
        image = resizer(image=image)["image"]

        # pad
        image, pads = pad(image, factor=768)

        # apply augmentations
        image = self.transform(image=image)["image"]

        return {
            "image_id": image_path.stem,
            "features": tensor_from_rgb_image(image),
            "pads": np.array(pads).T,
            "height": height,
            "width": width,
        }
Ejemplo n.º 15
0
def extract(json_path, datadir, savedir, size):
    if not os.path.exists(savedir):
        os.makedirs(savedir)
    transform = A.Compose([
        A.LongestMaxSize(size)
    ])
    df = pd.read_json(json_path, lines=True)
    for i, annotations in tqdm(enumerate(df['annotation'].values), total=df.shape[0]):
        image_path = os.path.join(datadir, f"image_{i}.png")
        image = cv2.imread(image_path)
        for k, annotation in enumerate(annotations):
            savepath = os.path.join(savedir, f"image_{i}_{k}.png")
            height = annotation['imageHeight']
            width = annotation['imageWidth']
            assert image.shape[0] == height and image.shape[1] == width
            if not 'Face' in annotation['label']:
                print(i, annotation)
                continue
            points = annotation['points']
            assert len(points) == 2
            start, end = points
            x, y = start['x'], start['y']
            u, v = end['x'], end['y']
            res = make_square((x, y, u, v), height, width)
            x, y, u, v = res
            selected_img = image[y:v, x: u]
            if np.min(selected_img.shape[:2]) > size:
                selected_img = transform(image=selected_img)['image']
            else:
                continue
            cv2.imwrite(savepath, selected_img)

            #print(annotation)
            #break
        #break
    pass
Ejemplo n.º 16
0
def get_train_aug(RESOLUTION=300): 
    return A.Compose([
        A.LongestMaxSize(max_size=RESOLUTION*2, interpolation=cv2.INTER_CUBIC, \
                         always_apply=True),
        A.PadIfNeeded(min_height=RESOLUTION*2, min_width=RESOLUTION*2, always_apply=True, border_mode=cv2.BORDER_CONSTANT),
        A.RandomResizedCrop(RESOLUTION,RESOLUTION, scale=(0.7, 1), \
                            interpolation=cv2.INTER_CUBIC),
        A.Resize(RESOLUTION, RESOLUTION, p=1.0, interpolation=cv2.INTER_CUBIC),
        A.FancyPCA(p=0.8, alpha=0.5),
#         A.Transpose(p=0.7),
        A.HorizontalFlip(p=0.5),
        A.VerticalFlip(p=0.1),
        A.ShiftScaleRotate(p=0.4, rotate_limit=12),
        A.HueSaturationValue(
            always_apply=False, p=0.3, 
            hue_shift_limit=(-20, 20), 
            sat_shift_limit=(-30, 30), 
            val_shift_limit=(-20, 20)),

#         A.HueSaturationValue(
#             hue_shift_limit=0.4, #.3
#             sat_shift_limit=0.4, #.3
#             val_shift_limit=0.4, #.3
#             p=0.7
#         ),
        A.RandomBrightnessContrast(
            brightness_limit=(-0.5,0.5), #-.2,.2
            contrast_limit=(-0.4, 0.4),  #-.2,.2
            #p=0.6
        ),
        A.CoarseDropout(p=0.8, max_holes=30),
#         A.Cutout(p=0.8, max_h_size=40, max_w_size=40),
        A.Cutout(p=1, max_h_size=60, max_w_size=30, num_holes=6, fill_value=[106,87,55]),
        A.Cutout(p=1, max_h_size=30, max_w_size=60, num_holes=6, fill_value=[106,87,55]),
        A.OneOf([
                A.OpticalDistortion(always_apply=False, p=1.0, distort_limit=(-0.6599999666213989, 0.6800000071525574), 
                                    shift_limit=(-0.6699999570846558, 0.4599999785423279), interpolation=0, 
                                    border_mode=0, value=(0, 0, 0), mask_value=None),
#                 A.OpticalDistortion(p=0.5, distort_limit=0.15, shift_limit=0.15),
#                 A.GridDistortion(p=0.5, distort_limit=0.5),
                A.GridDistortion(always_apply=False, p=1.0, 
                                 num_steps=6, distort_limit=(-0.4599999785423279, 0.5), 
                                 interpolation=0, border_mode=0, 
                                 value=(0, 0, 0), mask_value=None),

#                 A.IAAPiecewiseAffine(p=0.5, scale=(0.1, 0.14)),
                ], p=0.6),
        A.Sharpen(p=1.0, alpha=(0.1,0.3), lightness=(0.3, 0.9)),
        A.GaussNoise(var_limit=(300.0, 500.0), p=0.4),
        A.ISONoise(always_apply=False, p=0.4, 
                   intensity=(0.10000000149011612, 1.399999976158142), 
                   color_shift=(0.009999999776482582, 0.4000000059604645)),

        A.OneOf([
            A.Equalize(always_apply=False, p=1.0, mode='cv', by_channels=True),
            A.Solarize(always_apply=False, p=1.0, threshold=(67, 120)),
#             A.IAAAdditiveGaussianNoise(p=1.0),
            A.GaussNoise(p=1.0),
            A.MotionBlur(always_apply=False, p=1.0, blur_limit=(5, 20))
            ], p=0.5),
        ], p=1.0)
Ejemplo n.º 17
0
def get_augmentation(version):
    if version == "v1":
        # YOLOv2 size
        size = 448
        # ImageNet Normalization
        normalization = A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), p=1)

        augmentation = {
            "train": A.Compose([
                A.HorizontalFlip(p=0.5),
                A.VerticalFlip(p=0.5),
                A.RandomRotate90(p=0.5),

                A.RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3, p=0.25),
                A.Blur(blur_limit=4, always_apply=False, p=0.25),
                A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2, always_apply=False, p=0.25),

                A.OneOf([
                    A.RandomSizedBBoxSafeCrop(size, size, erosion_rate=0.0,
                                              interpolation=1, always_apply=False, p=0.5),
                    A.Resize(size, size, interpolation=1, always_apply=False, p=0.5),
                ], p=1),

                normalization
            ]),

            "valid": A.Compose([
                A.Resize(size, size, interpolation=1, always_apply=False, p=1),
                normalization
            ]),
        }

    elif version == "v2":
        # YOLOv2 size
        size = 448
        # ImageNet Normalization
        normalization = A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), p=1)

        augmentation = {
            "train": A.Compose([
                A.HorizontalFlip(p=0.5),
                A.VerticalFlip(p=0.5),
                A.RandomRotate90(p=0.5),

                A.RandomBrightnessContrast(brightness_limit=0.3, contrast_limit=0.3, p=0.25),
                A.Blur(blur_limit=4, always_apply=False, p=0.25),
                A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2,
                              always_apply=False, p=0.25),

                A.LongestMaxSize(max_size=size, interpolation=1, always_apply=False, p=1),
                A.PadIfNeeded(min_height=size, min_width=size,
                              pad_height_divisor=None, pad_width_divisor=None,
                              border_mode=1, value=None, mask_value=None,
                              always_apply=False, p=1),
                normalization
            ]),

            "valid": A.Compose([
                A.LongestMaxSize(max_size=size, interpolation=1, always_apply=False, p=1),
                A.PadIfNeeded(min_height=size, min_width=size,
                              pad_height_divisor=None, pad_width_divisor=None,
                              border_mode=1, value=None, mask_value=None,
                              always_apply=False, p=1),
                normalization
            ]),
        }

    else:
        raise Exception(f"Augmentation version '{version}' is unknown!")

    return augmentation
Ejemplo n.º 18
0
Scale = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]  # 13, 26, 52
CHECKPOINT_FILE = "checkpoint.pth.tar"
LOAD_MODEL = False

# Rescaled anchors to be between [0, 1]
# These are calculated using k-means on COCO dataset
# TODO: Recalculate for COCO
anchors = [
    [(0.28, 0.22), (0.38, 0.48), (0.90, 0.78)],
    [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
    [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)]
]

train_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=int(IMAGE_SIZE)),
        A.PadIfNeeded(min_height=int(IMAGE_SIZE), min_width=int(IMAGE_SIZE), border_mode=cv2.BORDER_CONSTANT),
        A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
        A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.1),
        A.ShiftScaleRotate(rotate_limit=10, p=0.2, border_mode=cv2.BORDER_CONSTANT),
        A.HorizontalFlip(p=0.5),
        #A.Blur(p=0.2),
        #A.CLAHE(p=0.2),
        #A.Posterize(p=0.2),
        A.ToGray(p=0.1),
        A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0),
        ToTensorV2()
    ],
    bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[])
)
Ejemplo n.º 19
0
 def __init__(self, file_paths: List[Path], max_size: int,
              transform: albu.Compose) -> None:
     self.file_paths = file_paths
     self.transform = transform
     self.max_size = max_size
     self.resize = albu.LongestMaxSize(max_size=max_size, p=1)
LOAD_MODEL = True
SAVE_MODEL = True
CHECKPOINT_FILE = "checkpoint.pth.tar"
IMG_DIR = DATASET + "/images/"
LABEL_DIR = DATASET + "/labels/"

ANCHORS = [
    [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
    [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
    [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
]  # Note these have been rescaled to be between [0, 1]

scale = 1.1
train_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
        A.PadIfNeeded(
            min_height=int(IMAGE_SIZE * scale),
            min_width=int(IMAGE_SIZE * scale),
            border_mode=cv2.BORDER_CONSTANT,
        ),
        A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
        A.ColorJitter(
            brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
        A.OneOf(
            [
                A.ShiftScaleRotate(
                    rotate_limit=10, p=0.4, border_mode=cv2.BORDER_CONSTANT),
                A.IAAAffine(shear=10, p=0.4, mode="constant"),
            ],
            p=1.0,
Ejemplo n.º 21
0
    def __init__(
            self,
            crop_height: typing.Union[int, typing.AnyStr] = 320,
            input_height: int = 224,
            gaussian_blur: bool = True,
            jitter_strength: float = 1.,
            seed_wrap_augments: bool = False,
            use_hflip_augment: bool = False,
            drop_orig_image: bool = True,
            crop_scale: typing.Tuple[float, float] = (0.2, 1.0),
            crop_ratio: typing.Tuple[float, float] = (1.0, 1.0),
            shared_transform=True,
            augmentation=True,  #Will be used to disable augmentation on inference / validation.
            crop_strategy="centroid",
            sync_hflip=False,
            same_crop=False) -> None:
        self.crop_height = crop_height
        self.input_height = input_height
        self.gaussian_blur = gaussian_blur
        self.jitter_strength = jitter_strength
        self.seed_wrap_augments = seed_wrap_augments
        self.use_hflip_augment = use_hflip_augment
        self.drop_orig_image = drop_orig_image
        self.shared_transform = shared_transform
        self.enable_augmentation = augmentation
        self.crop_strategy = crop_strategy
        self.sync_hflip = sync_hflip
        self.crop_scale = crop_scale
        self.crop_ratio = crop_ratio
        self.same_crop = same_crop

        bbox_transforms = [
            albumentations.LongestMaxSize(max_size=224),
            albumentations.PadIfNeeded(
                min_height=224,
                min_width=224,
                border_mode=0,
            )
        ]
        assert self.crop_strategy in ["centroid", "bbox", "bbox_same_crop"]

        if self.enable_augmentation:
            augment_transforms = [
                albumentations.RandomResizedCrop(
                    height=self.input_height,
                    width=self.input_height,
                    scale=self.crop_scale,
                    ratio=self.crop_ratio,
                ),
            ]
            if self.crop_strategy in ["bbox", "bbox_same_crop"]:
                augment_transforms = bbox_transforms + augment_transforms
            if self.use_hflip_augment:
                augment_transforms.append(albumentations.HorizontalFlip(p=0.5))
            augment_transforms.extend([
                albumentations.ColorJitter(
                    brightness=0.4 * self.jitter_strength,
                    contrast=0.4 * self.jitter_strength,
                    saturation=0.4 * self.jitter_strength,
                    hue=0.1 * self.jitter_strength,
                    p=0.8,
                ),
                albumentations.ToGray(p=0.2),
            ])
            if self.gaussian_blur:
                # @@@@@ TODO: check what kernel size is best? is auto good enough?
                #kernel_size = int(0.1 * self.input_height)
                #if kernel_size % 2 == 0:
                #    kernel_size += 1
                augment_transforms.append(
                    albumentations.GaussianBlur(
                        blur_limit=(3, 5),
                        #blur_limit=kernel_size,
                        #sigma_limit=???
                        p=0.5,
                    ))
        else:
            augment_transforms = bbox_transforms
        if self.seed_wrap_augments:
            assert thelper_available
            self.augment_transform = thelper.transforms.wrappers.SeededOpWrapper(
                operation=albumentations.Compose(augment_transforms),
                sample_kw="image",
            )
        else:
            self.augment_transform = albumentations.Compose(augment_transforms)

        self.convert_transform = torchvision.transforms.Compose([
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
        ])

        # add online train transform of the size of global view
        self.online_augment_transform = albumentations.Compose([
            albumentations.RandomResizedCrop(
                height=self.input_height,
                width=self.input_height,
                scale=(0.5, 1.0),  # @@@@ adjust if needed?
            ),  # @@@@@@@@@ BAD W/O SEED WRAPPER?
            albumentations.HorizontalFlip(
                p=0.5),  # @@@@@@@@@ BAD W/O SEED WRAPPER?
        ])

        self.sync_hflip_transform = albumentations.Compose([
            albumentations.HorizontalFlip(
                p=1),  # @@@@@@@@@ BAD W/O SEED WRAPPER?
        ])
Ejemplo n.º 22
0
def get_training_augmentation(size):
    train_transform = [
        A.LongestMaxSize(max_size=size, always_apply=True),
        A.PadIfNeeded(min_height=size,
                      min_width=size,
                      always_apply=True,
                      border_mode=0),
        # A.RandomCrop(height=size, width=size, always_apply=True),

        # A.VerticalFlip(p=0.5),
        # A.HorizontalFlip(p=0.5),
        # A.RandomRotate90(p=0.5),
        A.ShiftScaleRotate(scale_limit=0.2,
                           rotate_limit=0,
                           shift_limit=0.2,
                           p=0.1,
                           border_mode=0),
        A.IAAPerspective(p=0.1),
        A.CoarseDropout(p=0.1),
        A.ChannelDropout(p=0.1),
        A.RGBShift(p=0.1),
        A.OneOf(
            [A.OpticalDistortion(p=0.5),
             A.GridDistortion(p=0.5)],
            p=0.1,
        ),
        A.OneOf(
            [
                A.CLAHE(p=0.5),
                A.RandomBrightness(p=0.5),
                A.RandomGamma(p=0.5),
            ],
            p=0.5,
        ),
        A.OneOf(
            [
                A.GaussianBlur(p=0.1),
                A.IAASharpen(p=0.5),
                A.Blur(blur_limit=5, p=0.5),
                A.MotionBlur(blur_limit=5, p=0.5),
            ],
            p=0.5,
        ),
        A.OneOf(
            [
                A.RandomContrast(p=0.5),
                A.HueSaturationValue(p=0.5),
            ],
            p=0.1,
        ),
        A.Lambda(mask=round_clip_0_1),
        A.Cutout(num_holes=8,
                 max_h_size=20,
                 max_w_size=20,
                 fill_value=0,
                 always_apply=False,
                 p=0.2),
        A.CoarseDropout(max_holes=8,
                        max_height=20,
                        max_width=20,
                        min_holes=None,
                        min_height=None,
                        min_width=None,
                        fill_value=0,
                        always_apply=False,
                        p=0.2),
        # A.GlassBlur(sigma=0.7, max_delta=4, iterations=2, always_apply=False, mode='fast', p=0.2)
    ]
    return A.Compose(train_transform)
Ejemplo n.º 23
0
    'optim': 'sgd',
    "batch_size": 24,
    "n_splits": 5,
    "fold": 0,
    "seed": 0,
    "device": "cuda:0",
    "out_dim": 1049,
    "n_classes": 1049,
    'class_weights': "log",
    'class_weights_norm': 'batch',
    "normalization": "imagenet",
    "crop_size": 448,
}

args['tr_aug'] = A.Compose([
    A.LongestMaxSize(512, p=1),
    A.PadIfNeeded(512, 512, border_mode=cv2.BORDER_CONSTANT, p=1),
    A.RandomCrop(always_apply=False,
                 p=1.0,
                 height=args['crop_size'],
                 width=args['crop_size']),
    A.HorizontalFlip(always_apply=False, p=0.5),
],
                           p=1.0)

args['val_aug'] = A.Compose([
    A.LongestMaxSize(512, p=1),
    A.PadIfNeeded(512, 512, border_mode=cv2.BORDER_CONSTANT, p=1),
    A.CenterCrop(always_apply=False,
                 p=1.0,
                 height=args['crop_size'],
Ejemplo n.º 24
0
def run(datadir, n_gpus, epochs, batch_size, learning_rate):
    n_max_gpus = torch.cuda.device_count()
    print(f'{n_max_gpus} GPUs available')
    n_gpus = min(n_gpus, n_max_gpus)
    print(f'Using {n_gpus} GPUs')

    device_ids = list(range(n_gpus))
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

    preprocess = A.Compose([
        A.LongestMaxSize(max(IMAGE_SIZE)),
        A.PadIfNeeded(*IMAGE_SIZE),
        A.Normalize()
    ])

    augment = A.Compose(
        [A.RandomBrightness(0.3),
         A.RandomContrast(0.2),
         A.HorizontalFlip()])

    ds_train = StanfordDogs(datadir,
                            split='train',
                            preprocess=preprocess,
                            augment=augment)
    ds_val = StanfordDogs(datadir, split='test', preprocess=preprocess)

    n_workers = 8
    dl_train = DataLoader(ds_train,
                          batch_size=batch_size,
                          shuffle=True,
                          num_workers=n_workers)
    dl_val = DataLoader(ds_val, batch_size=batch_size, num_workers=n_workers)

    model = EfficientNet(backbone='efficientnet_b2', n_classes=N_CLASSES)
    model = nn.DataParallel(model, device_ids=device_ids)
    model.to(device)

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

    t_train_start = time.time()
    for e in range(epochs):
        t_epoch_start = time.time()
        model.train()
        for i, (images, labels) in enumerate(dl_train):
            optimizer.zero_grad()
            images, labels = images.to(device), labels.to(device)
            logits = model(images)
            loss = criterion(logits, labels)
            loss.backward()
            optimizer.step()

            acc = accuracy(logits, labels)

            epoch_time = time.time() - t_epoch_start
            show_progress(e,
                          i,
                          len(dl_train),
                          loss=loss.detach().cpu().numpy(),
                          acc=acc.detach().cpu().numpy(),
                          epoch_time=epoch_time)

        acc_val = []
        model.eval()
        with torch.no_grad():
            for images, labels in dl_val:
                images, labels = images.to(device), labels.to(device)
                logits = model(images)

                acc = accuracy(logits, labels)
                acc_val.append(acc.cpu().numpy())

        acc = np.mean(acc_val)
        t_epoch = time.time() - t_epoch_start
        print(f'\nEpoch{e} val-acc: {acc:.4}, time: {t_epoch:.4}s')

    t_train = time.time() - t_train_start
    print(f'Training finished with {t_train:.4}s')
Ejemplo n.º 25
0
import albumentations as A
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import cv2

image = Image.open('image.jpg')
# print(f'PIL before convert', image.size)
image = image.convert('RGB')  # needed for normalzie. W/o it there are w*h*4
# print(f'PIL after convert', image.size)

image = np.array(image)

transform = A.Compose([
    # A.RandomResizedCrop(256, 256),
    A.LongestMaxSize(256),
    # A.SmallestMaxSize(256),
    # A.Normalize(),
    # A.RandomCrop(256, 256),
    # A.CLAHE(),  # sharpness
    # A.CoarseDropout(), # rectangular
    # A.ColorJitter(),  # color aug
    # A.Cutout(),  # square
    # A.Equalize(), # color aug
    # A.HorizontalFlip(),
    # A.HueSaturationValue(10, 10, 10, p=1)  # color aug
    # Pad side of the image/max if side is less than desired number
    A.PadIfNeeded(256, 256, border_mode=cv2.BORDER_CONSTANT),
    # A.RandomBrightness(),
    # A.RandomContrast(),
    # A.RandomBrightnessContrast(),
Ejemplo n.º 26
0
        kwarg = {
            'dataset': dataset,
            'batch_size': batch_size,
            'shuffle': shuffle,
            'validation_split': validation_split,
            'num_workers': num_workers,
            'collate_fn': dataset.collate_fn
        }

        super(ChargridDataloader, self).__init__(**kwarg)


if __name__ == "__main__":
    size = 64
    aug = alb.Compose([
        alb.LongestMaxSize(size + 24),
        alb.PadIfNeeded(size + 24, size + 24, border_mode=cv2.BORDER_CONSTANT),
        alb.RandomCrop(size, size, p=0.3),
        alb.Resize(size, size)
    ], alb.BboxParams(format='coco', label_fields=['lbl_id'], min_area=2.0))

    dataset = SegDataset('./data', 'train_files.txt', transform=aug)
    data_loader = DataLoader(dataset,
                             batch_size=4,
                             shuffle=True,
                             collate_fn=dataset.collate_fn)
    print(len(data_loader))

    for idx, sample in enumerate(data_loader):
        img, mask, boxes, lbl_boxes = sample
        print(img.size())
Ejemplo n.º 27
0
class Yolo2(object):
    width = height = 544  #

    train_transform = A.Compose(  # Yolo
        [
            # A.RandomSizedCrop(min_max_height=(800, 1024), height=1024, width=1024, p=0.5),
            # A.RandomScale(scale_limit=0.3, p=1.0),  # 这个有问题
            C.RandomResize(scale_limit=0.3, p=1.0),  # 调节长宽比 [1/1.3, 1.3]
            A.OneOf(
                [
                    A.Sequential(
                        [
                            A.SmallestMaxSize(min(height, width), p=1.0),
                            A.RandomCrop(height, width,
                                         p=1.0)  # 先resize到短边544,再crop成544×544
                        ],
                        p=0.4),
                    A.LongestMaxSize(max(height, width),
                                     p=0.6),  #  resize到长边544
                ],
                p=1.0),

            # A.LongestMaxSize(max(height, width), p=1.0),
            A.OneOf([
                A.HueSaturationValue(hue_shift_limit=0.4,
                                     sat_shift_limit=0.4,
                                     val_shift_limit=0.4,
                                     p=0.9),
                A.RandomBrightnessContrast(
                    brightness_limit=0.3, contrast_limit=0.3, p=0.9),
            ],
                    p=0.9),
            # A.PadIfNeeded(min_height=height, min_width=width, border_mode=0, value=(0.5,0.5,0.5), p=1.0),
            C.RandomPad(min_height=height,
                        min_width=width,
                        border_mode=0,
                        value=(0.5, 0.5, 0.5),
                        p=1.0),
            A.HorizontalFlip(p=0.5),
            ToTensorV2(p=1.0),
        ],
        p=1.0,
        bbox_params=A.BboxParams(format='pascal_voc',
                                 min_area=0,
                                 min_visibility=0,
                                 label_fields=['labels']),
    )

    divisor = 32
    val_transform = A.Compose(  # Yolo
        [
            A.LongestMaxSize(width, p=1.0),
            A.PadIfNeeded(min_height=height,
                          min_width=width,
                          border_mode=0,
                          value=(0.5, 0.5, 0.5),
                          p=1.0),
            ToTensorV2(p=1.0),
        ],
        p=1.0,
        bbox_params=A.BboxParams(format='pascal_voc',
                                 min_area=0,
                                 min_visibility=0,
                                 label_fields=['labels']))
Ejemplo n.º 28
0
                A.IAAEmboss(),
                A.RandomBrightnessContrast(),
            ], p=0.3),
            A.Normalize(),
            M.MyToTensorV2(),
        ],
        additional_targets={
            'right_img': 'image',
            'left_normal': 'normal',
            'right_normal': 'normal',
        }
    )

    img_transform = A.Compose(
        [
            A.LongestMaxSize(max_size=IMAGE_SIZE),
            A.PadIfNeeded(min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT, value=0),
            A.Normalize(),
            M.MyToTensorV2(),
        ],
        additional_targets={
            'right_img': 'image',
        }
    )

    _, dataloader = create_dataloader("../bdataset_stereo", "train.json", transform=my_transform)
    left_imgs, right_imgs, left_normals, right_normals = next(iter(dataloader))
    assert left_imgs.shape == right_imgs.shape, "dataset error"
    assert right_normals.shape == left_normals.shape, "dataset error"
    assert left_imgs.shape == (2, 3, 256, 256), f"dataset error {left_imgs.shape}"
    assert left_normals.shape == (2, 3, 256, 256), f"dataset error {left_normals.shape}"
Ejemplo n.º 29
0
def pre_transforms(image_size=224):
    result = [
        A.LongestMaxSize(max_size=image_size),
        A.PadIfNeeded(image_size, image_size, border_mode=0)
    ]
    return result
Ejemplo n.º 30
0
    state_dict = rename_layers(state_dict, {"model.": ""})
    model.load_state_dict(state_dict)
    return model



@st.cache(allow_output_mutation=True)
def cached_model():
    model = load_model()
    model.eval()
    return model


model = cached_model()
transform = albu.Compose(
    [albu.LongestMaxSize(max_size=MAX_SIZE), albu.Normalize(p=1)], p=1
)

st.title("Segment glomeruli")
# What about a TIFF image?
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])

if uploaded_file is not None:
    original_image = np.array(Image.open(uploaded_file))
    st.image(original_image, caption="Before", use_column_width=True)
    st.write("")
    st.write("Detecting glomeruli...")

    original_height, original_width = original_image.shape[:2]
    image = transform(image=original_image)["image"]
    padded_image, pads = pad(image, factor=MAX_SIZE, border=cv2.BORDER_CONSTANT)