Ejemplo n.º 1
0
    def __init__(self):
        super().__init__()

        if 'sewer' in hparams.dataset:

            if hparams.in_channels == 1:
                mean, std = [0.5], [0.5]
            else:
                mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]

            self.train_t = Augment.Compose([  #Augment.ToGray(p=1.0),
                Augment.SmallestMaxSize(max_size=hparams.image_height,
                                        interpolation=cv2.INTER_LINEAR,
                                        always_apply=True),
                Augment.RandomCrop(hparams.image_height,
                                   hparams.image_height,
                                   always_apply=True),
                Augment.HorizontalFlip(p=0.5),
                Augment.RandomBrightnessContrast(p=0.5),
                Augment.Normalize(mean, std)
            ])

            self.test_t = Augment.Compose([
                Augment.SmallestMaxSize(max_size=hparams.image_height,
                                        interpolation=cv2.INTER_LINEAR,
                                        always_apply=True),
                Augment.CenterCrop(hparams.image_height,
                                   hparams.image_height,
                                   always_apply=True),
                Augment.Normalize(mean, std)
            ])
        else:
            print("> Unknown dataset. Terminating")
            exit()
def create_runtime_tfms():
    mean, std = [0.5] * 3, [0.5] * 3
    resize_to_64 = A.SmallestMaxSize(IMG_SIZE, interpolation=cv2.INTER_AREA)
    out = [
        A.HorizontalFlip(p=0.5),
        A.Normalize(mean=mean, std=std),
        ToTensor()
    ]

    rand_crop = A.Compose([
        A.SmallestMaxSize(IMG_SIZE + 8, interpolation=cv2.INTER_AREA),
        A.RandomCrop(IMG_SIZE, IMG_SIZE)
    ])

    affine_1 = A.ShiftScaleRotate(shift_limit=0,
                                  scale_limit=0.1,
                                  rotate_limit=8,
                                  interpolation=cv2.INTER_CUBIC,
                                  border_mode=cv2.BORDER_REFLECT_101,
                                  p=1.0)
    affine_1 = A.Compose([affine_1, resize_to_64])

    affine_2 = A.ShiftScaleRotate(shift_limit=0.06,
                                  scale_limit=(-0.06, 0.18),
                                  rotate_limit=6,
                                  interpolation=cv2.INTER_CUBIC,
                                  border_mode=cv2.BORDER_REFLECT_101,
                                  p=1.0)
    affine_2 = A.Compose([affine_2, resize_to_64])

    tfm_0 = A.Compose(out)
    tfm_1 = A.Compose([A.OneOrOther(affine_1, rand_crop, p=1.0), *out])
    tfm_2 = A.Compose([affine_2, *out])
    return [tfm_0, tfm_1, tfm_2]
Ejemplo n.º 3
0
 def __init__(self, 
             is_train,
             data_root='/home/dahu/xueruini/onion_rain/pytorch/dataset/plant-pathology-2021-fgvc8/train_images/', 
             csv_root='/home/dahu/xueruini/onion_rain/pytorch/dataset/plant-pathology-2021-fgvc8/div/',
             ):
     self.data_root = data_root
     if is_train:
         csv_data = pd.read_csv(csv_root+"trainset.csv")
         self.transform = A.Compose([
             A.SmallestMaxSize(256),
             A.RandomCrop(224, 224),
             A.Flip(p=0.5),
             A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
             ToTensorV2()
         ])
     
     else:
         csv_data = pd.read_csv(csv_root+"valset.csv")
         self.transform = A.Compose([
             A.SmallestMaxSize(256),
             A.CenterCrop(224, 224),
             A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
             ToTensorV2()
         ])
     self.img_paths = csv_data['image'].values
     self.labels = csv_data['t_label'].values
Ejemplo n.º 4
0
    def setup(self, stage: str) -> None:
        self.transform_train = A.Compose(
            [
                A.SmallestMaxSize(min(self.input_size[:2]),
                                  always_apply=True,
                                  interpolation=cv2.INTER_AREA),
                A.RandomCrop(
                    self.input_size[0], self.input_size[1], always_apply=1),
                A.HorizontalFlip(p=0.5),
                A.VerticalFlip(p=0.5),
                A.Rotate(p=0.5),
                A.GridDistortion(p=0.2),
                A.RandomBrightnessContrast((0, 0.5), (0, 0.5), p=0.2),
                A.GaussNoise(p=0.2)
            ],
            # additional_targets={'box_mask': 'mask'}, bbox_params=A.BboxParams(format='pascal_voc', label_fields=['category_ids'])
        )

        self.transform_val = A.Compose(
            [
                A.SmallestMaxSize(min(self.input_size[:2]),
                                  always_apply=True,
                                  interpolation=cv2.INTER_AREA),
                A.RandomCrop(
                    self.input_size[0], self.input_size[1], always_apply=1),
            ],
            # additional_targets={'box_mask': 'mask'}, bbox_params=A.BboxParams(format='pascal_voc', label_fields=['category_ids'])
        )

        # self.transform_test = A.Compose([
        #     A.SmallestMaxSize(min(self.input_size[:2]), always_apply=True, interpolation=cv2.INTER_AREA),
        #     # A.CenterCrop(height=self.input_size[0], width=self.input_size[1], always_apply=True)
        #     # A.PadIfNeeded(min_height=self.input_size[0], min_width=self.input_size[1], pad_height_divisor=16,
        #     #               pad_width_divisor=16, border_mode=cv2.BORDER_CONSTANT, always_apply=True, value=0)
        #     A.PadIfNeeded(min_height=None, min_width=None, pad_height_divisor=16, pad_width_divisor=16,
        #                   border_mode=cv2.BORDER_CONSTANT,
        #                   always_apply=True, value=0)
        #     # A.RandomCrop(self.input_size[0], self.input_size[1], always_apply=1),
        # ])

        self.train_dataset = StanfordDataset(
            "data/stanford_drone/videos",
            n_frame_samples=self.in_channels,
            interframe_step=self.interframe_step,
            mode="train",
            part_of_dataset_to_use=self.part_of_train_dataset,
            dilate=True,
            transform=self.transform_train)
        self.val_dataset = StanfordDataset(
            "data/stanford_drone/videos",
            n_frame_samples=self.in_channels,
            interframe_step=self.interframe_step,
            mode="val",
            part_of_dataset_to_use=self.part_of_val_dataset,
            dilate=True,
            transform=self.transform_val)

        self.unnormalizer = UnNormalize(mean=self.train_dataset.mean,
                                        std=self.train_dataset.std)
Ejemplo n.º 5
0
    def __init__(
        self,
        data_csv,
        data_root,
        segmentation_root,
        size=None,
        random_crop=False,
        interpolation="bicubic",
    ):
        self.n_labels = 182
        self.data_csv = data_csv
        self.data_root = data_root
        self.segmentation_root = segmentation_root
        with open(self.data_csv, "r") as f:
            self.image_paths = f.read().splitlines()
        self._length = len(self.image_paths)
        self.labels = {
            "relative_file_path_": [l for l in self.image_paths],
            "file_path_": [
                os.path.join(self.data_root + 'images', l)
                for l in self.image_paths
            ],
            "segmentation_path_": [
                os.path.join(self.data_root + "segmentations",
                             l.replace("image", "label"))
                for l in self.image_paths
            ],
        }

        size = None if size is not None and size <= 0 else size
        self.size = size
        if self.size is not None:
            self.interpolation = interpolation
            self.interpolation = {
                "nearest": cv2.INTER_NEAREST,
                "bilinear": cv2.INTER_LINEAR,
                "bicubic": cv2.INTER_CUBIC,
                "area": cv2.INTER_AREA,
                "lanczos": cv2.INTER_LANCZOS4
            }[self.interpolation]
            self.image_rescaler = albumentations.SmallestMaxSize(
                max_size=self.size, interpolation=self.interpolation)
            self.segmentation_rescaler = albumentations.SmallestMaxSize(
                max_size=self.size, interpolation=cv2.INTER_NEAREST)
            self.center_crop = not random_crop
            if self.center_crop:
                self.cropper = albumentations.CenterCrop(height=self.size,
                                                         width=self.size)
            else:
                self.cropper = albumentations.RandomCrop(height=self.size,
                                                         width=self.size)
            self.preprocessor = self.cropper
Ejemplo n.º 6
0
    def __init__(self, config=None, size=None, random_crop=False, interpolation="bicubic", crop_size=None):
        self.split = self.get_split()
        self.n_labels = 151 # unknown + 150
        self.data_csv = {"train": "data/ade20k_train.txt",
                         "validation": "data/ade20k_test.txt"}[self.split]
        self.data_root = "data/ade20k_root"
        with open(os.path.join(self.data_root, "sceneCategories.txt"), "r") as f:
            self.scene_categories = f.read().splitlines()
        self.scene_categories = dict(line.split() for line in self.scene_categories)
        with open(self.data_csv, "r") as f:
            self.image_paths = f.read().splitlines()
        self._length = len(self.image_paths)
        self.labels = {
            "relative_file_path_": [l for l in self.image_paths],
            "file_path_": [os.path.join(self.data_root, "images", l)
                           for l in self.image_paths],
            "relative_segmentation_path_": [l.replace(".jpg", ".png")
                                            for l in self.image_paths],
            "segmentation_path_": [os.path.join(self.data_root, "annotations",
                                                l.replace(".jpg", ".png"))
                                   for l in self.image_paths],
            "scene_category": [self.scene_categories[l.split("/")[1].replace(".jpg", "")]
                               for l in self.image_paths],
        }

        size = None if size is not None and size<=0 else size
        self.size = size
        if crop_size is None:
            self.crop_size = size if size is not None else None
        else:
            self.crop_size = crop_size
        if self.size is not None:
            self.interpolation = interpolation
            self.interpolation = {
                "nearest": cv2.INTER_NEAREST,
                "bilinear": cv2.INTER_LINEAR,
                "bicubic": cv2.INTER_CUBIC,
                "area": cv2.INTER_AREA,
                "lanczos": cv2.INTER_LANCZOS4}[self.interpolation]
            self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size,
                                                                 interpolation=self.interpolation)
            self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size,
                                                                        interpolation=cv2.INTER_NEAREST)

        if crop_size is not None:
            self.center_crop = not random_crop
            if self.center_crop:
                self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
            else:
                self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
            self.preprocessor = self.cropper
Ejemplo n.º 7
0
class FRCNN(object):
    width = height = short_side = opt.scale if opt.scale else 600

    divisor = 32
    train_transform = A.Compose(  # FRCNN
        [
            A.SmallestMaxSize(short_side, p=1.0),  # resize到短边600
            A.PadIfNeeded(min_height=None,
                          min_width=None,
                          pad_height_divisor=divisor,
                          pad_width_divisor=divisor,
                          p=1.0),

            # A.RandomCrop(height=height, width=width, p=1.0),  # 600×600
            A.OneOf([
                A.HueSaturationValue(hue_shift_limit=0.3,
                                     sat_shift_limit=0.3,
                                     val_shift_limit=0.3,
                                     p=0.95),
                A.RandomBrightnessContrast(
                    brightness_limit=0.3, contrast_limit=0.3, p=0.95),
            ],
                    p=1.0),
            A.ToGray(p=0.01),
            A.HorizontalFlip(p=0.5),
            ToTensorV2(p=1.0),
        ],
        p=1.0,
        bbox_params=A.BboxParams(format='pascal_voc',
                                 min_area=0,
                                 min_visibility=0,
                                 label_fields=['labels']),
    )

    # FRCNN
    val_transform = A.Compose(
        [
            A.SmallestMaxSize(short_side, p=1.0),  # resize到短边600
            A.PadIfNeeded(min_height=None,
                          min_width=None,
                          pad_height_divisor=divisor,
                          pad_width_divisor=divisor,
                          p=1.0),
            ToTensorV2(p=1.0),
        ],
        p=1.0,
        bbox_params=A.BboxParams(format='pascal_voc',
                                 min_area=0,
                                 min_visibility=0,
                                 label_fields=['labels']))
Ejemplo n.º 8
0
def test_smallest_max_size_keypoints():
    img = np.random.randint(0, 256, [50, 10], np.uint8)
    keypoints = [(9, 5, 0, 0)]

    aug = A.SmallestMaxSize(max_size=100, p=1)
    result = aug(image=img, keypoints=keypoints)
    assert result["keypoints"] == [(90, 50, 0, 0)]

    aug = A.SmallestMaxSize(max_size=5, p=1)
    result = aug(image=img, keypoints=keypoints)
    assert result["keypoints"] == [(4.5, 2.5, 0, 0)]

    aug = A.SmallestMaxSize(max_size=10, p=1)
    result = aug(image=img, keypoints=keypoints)
    assert result["keypoints"] == [(9, 5, 0, 0)]
Ejemplo n.º 9
0
    def __init__(self, base_dir=None, split='train', affine_augmenter=None, image_augmenter=None, 
            target_size=224, filename=None, use_bined=False, n_class=4, debug=False):
        self.base_dir = base_dir
        self.base_dir = Path(base_dir)
        self.split = split
        self.use_bined = use_bined
        self.n_class = n_class
        self.debug = debug

        self.img_paths = []
        self.bbox = []
        self.labels = []
        self.euler_binned = []

        with open(self.base_dir / filename) as f:
            for i, line in enumerate(f.readlines()):
                ls = line.strip()

                mat_path = self.base_dir / ls.replace('.jpg', '.mat')
                bbox, pose = get_pt_ypr_from_mat(mat_path, pt3d=True)

                if True and (abs(pose[0])>99 or abs(pose[1])>99 or abs(pose[2])>99):
                    continue

                if use_bined:
                    yaw_pitch_bins = np.array([-60, -40, -20, 20, 40, 60])
                    roll_bins = np.array(range(-81, 82, 9))
                    self.euler_binned.append([np.digitize(pose[0], yaw_pitch_bins),np.digitize(pose[1], yaw_pitch_bins),np.digitize(pose[2], roll_bins)])

                self.labels.append(np.array(pose))
                self.bbox.append(bbox)
                self.img_paths.append(ls)

        self.labels_sort_idx = np.argsort(-np.mean(np.abs(self.labels), axis=1))
        

        if 'train' in self.split:
            self.resizer = albu.Compose([albu.SmallestMaxSize(target_size, p=1.),
                                        albu.RandomScale(scale_limit=(-0.2, 0.2), p=0.1),
                                        albu.PadIfNeeded(min_height=target_size, min_width=target_size, value=0, p=1),
                                        albu.RandomCrop(target_size, target_size, p=1.)])
        else:
            # self.resizer = albu.Compose([albu.Resize(target_size[0], target_size[1], p=1.)])
            self.resizer = albu.Compose([albu.SmallestMaxSize(target_size, p=1.),
                                        albu.CenterCrop(target_size, target_size, p=1.)])

        self.affine_augmenter = affine_augmenter
        self.image_augmenter = image_augmenter
Ejemplo n.º 10
0
def factory(name, image_size, p=0.5, without_norm=False):
    tr_func = globals().get(name, None)
    if tr_func is None:
        raise AttributeError("Transform %s doesn't exist" % (name, ))

    norm = {
        'mean': [0.485, 0.456, 0.406],
        'std': [0.229, 0.224, 0.225]
    } if not without_norm else None

    max_size_tr = A.SmallestMaxSize(max_size=image_size, always_apply=True)
    train_transform = A.Compose([
        max_size_tr,
        tr_func(image_size, p),
        A.RandomCrop(image_size, image_size, always_apply=True),
        ToTensor(normalize=norm),
    ])
    val_transform = A.Compose([
        max_size_tr,
        A.CenterCrop(image_size, image_size, always_apply=True),
        ToTensor(normalize=norm),
    ])
    test_transform = val_transform  # TODO: tta (return list)

    return train_transform, val_transform, test_transform
Ejemplo n.º 11
0
def resize_transforms(image_size=512):
    BORDER_CONSTANT = 0
    pre_size = int(image_size * 1.5)

    random_crop = albu.Compose([
        albu.SmallestMaxSize(pre_size, p=1),
        albu.RandomCrop(
            image_size, image_size, p=1
        )

    ])

    rescale = albu.Compose([albu.Resize(image_size, image_size, p=1)])

    random_crop_big = albu.Compose([
        albu.LongestMaxSize(pre_size, p=1),
        albu.RandomCrop(
            image_size, image_size, p=1
        )

    ])


    result = [
        albu.OneOf([
            random_crop,
            rescale,
            random_crop_big
        ], p=1)
    ]

    return result
Ejemplo n.º 12
0
 def get_augs_train(self):
     augs_train = A.Compose([
         # Geometric Augs
         A.SmallestMaxSize(max_size=self.resize_h, interpolation=0, p=1.0),
         A.CenterCrop(height=self.resize_h, width=self.resize_w, p=1.0),
     ])
     return augs_train
Ejemplo n.º 13
0
 def __init__(self, config: dict, mode: str):
     super(NanodetDataset, self).__init__(config, mode)
     if self.augment:
         assert 'hyper' in config.keys(
         ), 'Please add the parameters for data augmentation !'
         self.hyp = config['hyper']
         self.transforms = A.Compose(
             [
                 A.SmallestMaxSize(max_size=min(self.img_size)),
                 A.ShiftScaleRotate(shift_limit=self.hyp.get('shift', 0.),
                                    scale_limit=self.hyp.get('scale', 0.),
                                    rotate_limit=self.hyp.get('rotate',
                                                              0.)),
                 A.HorizontalFlip(),
                 A.VerticalFlip(),
                 A.RandomCrop(height=self.img_size[0],
                              width=self.img_size[1]),
                 # A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
                 ToTensorV2()
             ],
             bbox_params=A.BboxParams(format='coco',
                                      min_area=256,
                                      min_visibility=0.2,
                                      label_fields=['gt_labels']))
     else:
         self.transforms = A.Compose(
             [A.LongestMaxSize(max_size=max(self.img_size)),
              ToTensorV2()],
             bbox_params=A.BboxParams(format='coco',
                                      min_area=256,
                                      min_visibility=0.2,
                                      label_fields=['gt_labels']))
Ejemplo n.º 14
0
def get_transforms(input_size=600, transforms_mode="no"):
    mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
    trans = {
        "no_pad": Compose([
            ToTensor(),
            AlbumentationsWrapper(A.SmallestMaxSize(input_size)),
            Normalize(mean, std),
        ]),
        "simple": Compose([
            ResizeAndPad(input_size),
            ToTensor(),
            Normalize(mean, std),
        ]),
        # "light": Compose([
        #     RandomResizedCrop(train_size),
        #     RandomHorizontalFlip(),
        #     ColorJitter(0.3, 0.3, 0.3),
        #     ToTensor(),
        #     Normalize(mean, std),
        # ]),
    }

    if transforms_mode not in trans:
        raise ValueError(
            f"Invalid transformation mode. Expected one of "
            f"{list(trans.keys())}, got {transforms_mode} instead.")

    return trans[transforms_mode]
Ejemplo n.º 15
0
    def __init__(self,
                 base_dir=None,
                 filename=None,
                 n_class=3,
                 target_size=224,
                 affine_augmenter=None,
                 image_augmenter=None,
                 debug=False,
                 paired_img=False):

        print("[INFO] Initing Rank300WLPDataset with HDF5 type.")
        print(base_dir, filename, n_class, target_size, debug)
        self.base_dir = Path(base_dir)
        self.n_class = n_class
        self.target_size = target_size
        self.affine_augmenter = affine_augmenter
        self.image_augmenter = image_augmenter
        self.debug = debug
        self.paired_img = paired_img
        self.CMU_data = False

        self.resizer = albu.Compose([
            albu.SmallestMaxSize(target_size, p=1.),
            albu.CenterCrop(target_size, target_size, p=1.)
        ])

        # CMU_dataset_64x64

        # self.dbs = self.load_dbs(base_dir, filename)
        self.dbs = self.load_all_hdf5(base_dir)
        # print(self.dbs[0]["labels"].shape[0])
        self.size_dbs = [db["labels"].shape[0] for db in self.dbs]
        self.numImages = sum(self.size_dbs)
        print(f"[INFO] Size dbs {self.numImages}")
Ejemplo n.º 16
0
def get_preprocessor(size=None, random_crop=False, additional_targets=None,
                     crop_size=None):
    if size is not None and size > 0:
        transforms = list()
        rescaler = albumentations.SmallestMaxSize(max_size = size)
        transforms.append(rescaler)
        if not random_crop:
            cropper = albumentations.CenterCrop(height=size,width=size)
            transforms.append(cropper)
        else:
            cropper = albumentations.RandomCrop(height=size,width=size)
            transforms.append(cropper)
            flipper = albumentations.HorizontalFlip()
            transforms.append(flipper)
        preprocessor = albumentations.Compose(transforms,
                                              additional_targets=additional_targets)
    elif crop_size is not None and crop_size > 0:
        if not random_crop:
            cropper = albumentations.CenterCrop(height=crop_size,width=crop_size)
        else:
            cropper = albumentations.RandomCrop(height=crop_size,width=crop_size)
        transforms = [cropper]
        preprocessor = albumentations.Compose(transforms,
                                              additional_targets=additional_targets)
    else:
        preprocessor = lambda **kwargs: kwargs
    return preprocessor
Ejemplo n.º 17
0
    def __init__(self, config):
        self.data = self.get_base_data(config)
        self.size = retrieve(config, "spatial_size", default=32)

        self.rescaler = albumentations.SmallestMaxSize(max_size = self.size)
        self.cropper = albumentations.CenterCrop(height=self.size,width=self.size)
        self.preprocessor = albumentations.Compose([self.rescaler, self.cropper])
Ejemplo n.º 18
0
    def test_dataloader(self):
        """Summary

        Returns:
            TYPE: Description
        """
        ds_test = MultiLabelDataset(folder=self.hparams.data_path,
                                    is_train='test',
                                    fname='test.csv',
                                    types=self.hparams.types,
                                    pathology=self.hparams.pathology,
                                    resize=int(self.hparams.shape))

        ds_test.reset_state()
        ag_test = [
            imgaug.Albumentations(
                AB.SmallestMaxSize(self.hparams.shape, p=1.0)),
            iimgaug.ColorSpace(mode=cv2.COLOR_GRAY2RGB),
            imgaug.Albumentations(AB.CLAHE(p=1)),
            imgaug.ToFloat32(),
        ]
        ds_test = AugmentImageComponent(ds_test, ag_test, 0)
        ds_test = BatchData(ds_test, self.hparams.batch, remainder=True)
        # ds_test = MultiProcessRunner(ds_test, num_proc=4, num_prefetch=16)
        ds_test = PrintData(ds_test)
        ds_test = MapData(ds_test,
                          lambda dp: [torch.tensor(np.transpose(dp[0], (0, 3, 1, 2))),
                                      torch.tensor(dp[1]).float()])
        return ds_test
Ejemplo n.º 19
0
    def __init__(self, dims, outputPath, dataKey="images", bufSize=1000):
        # check to see if the output path exists, and if so, raise
        # an exception
        if os.path.exists(outputPath):
            raise ValueError(
                "The supplied ‘outputPath‘ already exists and cannot be overwritten. Manually delete the file before continuing.",
                outputPath)

        # open the HDF5 database for writing and create two datasets:
        # one to store the images/features and another to store the
        # class labels
        self.db = h5py.File(outputPath, "w")
        self.data = self.db.create_dataset(dataKey, dims, dtype=np.uint8)
        # self.size_imgs = self.db.create_dataset("raw_size_data", (dims[0], 3) , dtype=np.uint8)
        self.labels = self.db.create_dataset("labels", (dims[0], 3),
                                             dtype="float")
        self.size_data = (dims[1], dims[2], dims[3])

        print(
            f"[Wranning] If input data is larger size {self.size_data}, auto resizer is called to target size: {self.size_data}."
        )

        target_size = max(dims[1], dims[2])

        self.resizer = albu.Compose([
            albu.SmallestMaxSize(target_size + 1, p=1.),
            albu.CenterCrop(target_size, target_size, p=1.)
        ])
        # self.resizer = albu.Compose([albu.SmallestMaxSize(target_size, p=1.)])
        # self.centerCrop = albu.Compose([albu.CenterCrop(target_size, target_size, p=1.)])
        # store the buffer size, then initialize the buffer itself
        # along with the index into the datasets
        self.bufSize = bufSize
        self.buffer = {"data": [], "raw_size_data": [], "labels": []}
        self.idx = 0
Ejemplo n.º 20
0
def get_lung_transforms(*, augment, args):
    transforms_train = A.Compose([
        A.SmallestMaxSize(max_size=args.img_size),
        A.Transpose(p=0.5),
        A.VerticalFlip(p=0.5),
        A.HorizontalFlip(p=0.5),
        A.RandomBrightnessContrast(brightness_limit=0.2,
                                   contrast_limit=0.2,
                                   p=0.75),
        A.Resize(args.img_size, args.img_size),
        A.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225],
        ),
        ToTensorV2()
    ])

    transforms_val = A.Compose([
        A.Resize(args.img_size, args.img_size),
        A.Normalize(
            mean=[0.485, 0.456, 0.406],
            std=[0.229, 0.224, 0.225],
        ),
        ToTensorV2()
    ])

    if augment == 'augment':
        return transforms_train
    else:
        return transforms_val
Ejemplo n.º 21
0
    def forward_img(self, sample_ims: List[np.array], smallest_size=640):
        """ Process sample grayscale images (n_images == self.input_size) and generates one segmentation
        (for central input img) """
        transform = A.Compose([
            A.SmallestMaxSize(smallest_size,
                              always_apply=True,
                              interpolation=cv2.INTER_AREA),
            A.PadIfNeeded(min_height=None,
                          min_width=None,
                          pad_height_divisor=16,
                          pad_width_divisor=16,
                          border_mode=cv2.BORDER_CONSTANT,
                          always_apply=True,
                          value=0)
        ])

        sample_ims = np.stack(sample_ims, axis=-1)
        sample_ims = transform(image=sample_ims)["image"]
        self.net.eval()
        with torch.no_grad():
            x = sample_ims
            x = self.val_dataset.torch_transform(x)
            x = torch.unsqueeze(x, 0)
            x = x.to(self.device)
            out_mask = self.forward(x)
            out_mask = out_mask[0].permute(1, 2, 0).cpu().numpy()
            out_mask = np.argmax(out_mask, axis=-1)
        masked_img = self.val_dataset.generate_masked_image(
            sample_ims[:, :, sample_ims.shape[-1] // 2],
            out_mask,
            gray_img=True)
        return masked_img
Ejemplo n.º 22
0
def resize_transforms(image_size=224):
    BORDER_CONSTANT = 0
    pre_size = int(image_size * 1.5)

    random_crop = albu.Compose([
        albu.SmallestMaxSize(pre_size, p=1),
        albu.RandomCrop(image_size, image_size, p=1)
    ])

    rescale = albu.Compose([albu.Resize(image_size, image_size, p=1)])

    random_crop_big = albu.Compose([
        albu.LongestMaxSize(pre_size, p=1),
        albu.RandomCrop(image_size, image_size, p=1)
    ])

    # Converts the image to a square of size image_size x image_size
    # result = [
    #   albu.OneOf([
    #       random_crop,
    #       rescale,
    #       random_crop_big
    #   ], p=1)
    # ]

    result = [albu.RandomCrop(image_size, image_size, p=1)]

    return result
Ejemplo n.º 23
0
def get_train_transforms(config):
    return A.Compose(
        [
            A.OneOf([
                A.HueSaturationValue(hue_shift_limit=0.1, sat_shift_limit= 0.1, 
                                     val_shift_limit=0.1, p=0.8),
                A.RandomBrightnessContrast(brightness_limit=0.3, 
                                           contrast_limit=0.2, p=0.8),
            ],p=0.7),
            A.Rotate (limit=15, interpolation=1, border_mode=4, value=None, mask_value=None, p=0.8),
            
            
            A.HorizontalFlip(p=0.5),
            A.VerticalFlip(p=0.5),
            A.RandomResizedCrop (config.preprocess.height, config.preprocess.width, scale=(0.8, 0.8), ratio=(0.75, 1.3333333333333333), interpolation=1, always_apply=False, p=0.1),
            A.OneOf([
            A.Resize(height=config.preprocess.height, width=config.preprocess.width, p=0.2),
            A.LongestMaxSize(max_size=config.preprocess.longest_max_size, p=0.2),
            A.SmallestMaxSize(max_size=config.preprocess.smallest_max_size, p=0.2),
                
            ], p=1),
            A.CLAHE(clip_limit=[1,4],p=1),
            
        ], 
        p=1.0, 
        bbox_params=A.BboxParams(
            format='coco',
            min_area=0.5, 
            min_visibility=0.5,
            label_fields=['category_id']
        )
    )
Ejemplo n.º 24
0
 def _get_train_transform(self):
     print("Using train transform")
     return A.Compose([
         A.HorizontalFlip(p=0.5),
         A.ColorJitter(brightness=0.2,
                       contrast=0.2,
                       saturation=0.2,
                       hue=0,
                       p=0.5),
         A.OneOf([
             A.Compose([
                 A.SmallestMaxSize(max_size=self.target_size[0],
                                   interpolation=cv2.INTER_LINEAR,
                                   p=1.0),
                 A.RandomCrop(height=self.target_size[0],
                              width=self.target_size[0],
                              p=1.0)
             ],
                       p=1.0),
             A.RandomResizedCrop(height=self.target_size[0],
                                 width=self.target_size[1],
                                 scale=(0.25, 1.0),
                                 ratio=(3. / 4., 4. / 3.),
                                 interpolation=cv2.INTER_LINEAR,
                                 p=1.0),
             A.Resize(height=self.target_size[0],
                      width=self.target_size[1],
                      interpolation=cv2.INTER_LINEAR,
                      p=1.0)
         ],
                 p=1.0)
     ])
Ejemplo n.º 25
0
    def __init__(self, config):
        width = height = config.DATA.SCALE  # 300/512

        self.train_transform = A.Compose(  # Yolo
            [
                # A.RandomSizedCrop(min_max_height=(800, 1024), height=1024, width=1024, p=0.5),
                # A.RandomScale(scale_limit=0.3, p=1.0),  # 这个有问题
                C.RandomResize(scale_limit=0.3, p=1.0),  # 调节长宽比 [1/1.3, 1.3]
                A.OneOf(
                    [
                        A.Sequential(
                            [
                                A.SmallestMaxSize(min(height, width), p=1.0),
                                A.RandomCrop(
                                    height, width,
                                    p=1.0)  # 先resize到短边544,再crop成544×544
                            ],
                            p=0.4),
                        A.LongestMaxSize(max(height, width),
                                         p=0.6),  #  resize到长边544
                    ],
                    p=1.0),

                # A.LongestMaxSize(max(height, width), p=1.0),
                A.OneOf([
                    A.HueSaturationValue(hue_shift_limit=0.4,
                                         sat_shift_limit=0.4,
                                         val_shift_limit=0.4,
                                         p=0.9),
                    A.RandomBrightnessContrast(
                        brightness_limit=0.3, contrast_limit=0.3, p=0.9),
                ],
                        p=0.9),
                # A.PadIfNeeded(min_height=height, min_width=width, border_mode=0, value=(0.5,0.5,0.5), p=1.0),
                C.RandomPad(min_height=height,
                            min_width=width,
                            border_mode=0,
                            value=(123 / 255, 117 / 255, 104 / 255),
                            p=1.0),
                A.HorizontalFlip(p=0.5),
                ToTensorV2(p=1.0),
            ],
            p=1.0,
            bbox_params=A.BboxParams(format='pascal_voc',
                                     min_area=0,
                                     min_visibility=0,
                                     label_fields=['labels']),
        )

        self.val_transform = A.Compose([
            A.Resize(height=height, width=width, p=1.0),
            ToTensorV2(p=1.0),
        ],
                                       p=1.0,
                                       bbox_params=A.BboxParams(
                                           format='pascal_voc',
                                           min_area=0,
                                           min_visibility=0,
                                           label_fields=['labels']))
Ejemplo n.º 26
0
def get_test_augmentation():
    augmentations_val = A.Compose([
        A.SmallestMaxSize(256),
        A.CenterCrop(224, 224),
        A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ToTensorV2(),
    ], )
    return lambda img: augmentations_val(image=np.array(img))
def resize_image_test(img_arr, smallest_max_size):
    # create resize transform pipeline
    transform = albumentations.Compose([
        albumentations.SmallestMaxSize(max_size=smallest_max_size,
                                       always_apply=True)
    ])

    return transform(image=img_arr)
Ejemplo n.º 28
0
def test_smallest_max_size_list():
    img = np.random.randint(0, 256, [50, 10], np.uint8)
    keypoints = [(9, 5, 0, 0)]

    aug = A.SmallestMaxSize(max_size=[50, 100], p=1)
    result = aug(image=img, keypoints=keypoints)
    assert result["image"].shape in [(250, 50), (500, 100)]
    assert result["keypoints"] in [[(45, 25, 0, 0)], [(90, 50, 0, 0)]]
Ejemplo n.º 29
0
    def __init__(self,
                 size=None,
                 crop_size=None,
                 random_crop=False,
                 up_factor=None,
                 hr_factor=None,
                 keep_mode="bicubic"):
        self.base = self.get_base()

        self.size = size
        self.crop_size = crop_size if crop_size is not None else self.size
        self.random_crop = random_crop
        self.up_factor = up_factor
        self.hr_factor = hr_factor
        self.keep_mode = keep_mode

        transforms = list()

        if self.size is not None and self.size > 0:
            rescaler = albumentations.SmallestMaxSize(max_size=self.size)
            self.rescaler = rescaler
            transforms.append(rescaler)

        if self.crop_size is not None and self.crop_size > 0:
            if len(transforms) == 0:
                self.rescaler = albumentations.SmallestMaxSize(
                    max_size=self.crop_size)

            if not self.random_crop:
                cropper = albumentations.CenterCrop(height=self.crop_size,
                                                    width=self.crop_size)
            else:
                cropper = albumentations.RandomCrop(height=self.crop_size,
                                                    width=self.crop_size)
            transforms.append(cropper)

        if len(transforms) > 0:
            if self.up_factor is not None:
                additional_targets = {"lr": "image"}
            else:
                additional_targets = None
            self.preprocessor = albumentations.Compose(
                transforms, additional_targets=additional_targets)
        else:
            self.preprocessor = lambda **kwargs: kwargs
Ejemplo n.º 30
0
def data_sample():
  return A.Compose([
    A.SmallestMaxSize(max_size=200),
    A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=15, p=0.5),
    A.RandomCrop(height=size, width=size),
    A.RGBShift(r_shift_limit=15, g_shift_limit=15, b_shift_limit=15, p=0.5),
    A.RandomBrightnessContrast(p=0.5),
    A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    ToTensorV2()
  ])