def getDistanceTest(): from algorithm import getDistance m,n=20,10 ma = np.zeros((m,n)).astype(int) ma[:5,5:]=1 ma[5:,:5]=2 ma[5:,5:]=3 dis = getDistance(ma) print ma print dis[0][2] print dis[0][1]
def getWeightSumTest(): from algorithm import getLbp ,getVectors,getWeightSum labelMap = getSlic(img,200) maxLabel = labelMap.max() + 1 im = sk.color.rgb2lab(img) degreeVectors, Ws = getVectors(im, labelMap) vectors = getWeightSum(labelMap, degreeVectors, Ws) m,n = labelMap.shape imgg = np.zeros((m,n)) imgg2 = np.zeros((m,n)) order = ['lab','l','a','b','lab-texture','l-texture','a-texture','b-texture'] labs = [im]+ [im[:,:,i] for i in range(3)] lbps = map(lambda c: getLbp(c,labelMap,1)[1],labs) labLbp = labs + lbps for color in range(vectors.shape[1]): for k in range(maxLabel): imgg[labelMap==k]=vectors[k][color] imgg2[labelMap==k]=degreeVectors[k][color] print order[color],'raw | scatter | weight sum' # show(sk.exposure.equalize_hist(imgg)) show([labLbp[color],imgg2,imgg],1) loga(degreeVectors) loga(vectors) g()
def getEdgeImg(img, labelMap=None, width=0.0): ''' width(float):how width of edge return a list of label: edge of labelMap ''' labelMap = getSlic(img, 300) if labelMap is None else labelMap width = int(min(*labelMap.shape) * width) u, d, l, r = (labelMap[0:width + 1].ravel(), labelMap[-1 - width:].ravel(), labelMap[:, 0:width + 1].ravel(), labelMap[:, -1 - width:].ravel()) edge = np.unique(np.c_[[u], [d], [l], [r]]) new = np.zeros(img.shape) for i in edge: new[labelMap == i] = 1 show(new) return new
IMG_DIR = r'C:\D\dataset\saliency\ECSSD-small\images/' COARSE_DIR =r'C:\D\dataset\saliency\ECSSD-small\ground_truth_mas/' IMG_DIR = r'test/' COARSE_DIR ='test/' IMG_NAME_LIST = filter(lambda x:x[-3:]=='jpg',listdir(IMG_DIR)) setModuleConstant(alg) imgName = IMG_NAME_LIST[0] img,imgGt = readImg(imgName) rgbImg = img rgbImg = np.zeros((100,100,3)) rgbImg[25:75,25:75,1:]=1. #show(rgbImg) def integratImgsBy3wayTest(): from algorithm import getSlic,getCoarseDic,integratImgsBy3way,buildMethodDic labelMap = getSlic(rgbImg,300) img = rgbImg m, n = labelMap.shape coarseMethods = ['GT'] coarseDic = getCoarseDic(imgName,coarseMethods) # show(coarseDic) coarseImgs=coarseDic.values() g()