Ejemplo n.º 1
0
def listener():
    global data
    global veh, fea
    data = DataCollect.DataCollect(2, 1)
    p1 = np.matrix('1.01; 0.1')
    p2 = np.matrix('2.9; 1.9')
    cov1 = np.matrix('0.5 0; 0 0.5')
    cov2 = np.matrix('0.5 0; 0 0.5')
    init_veh_distr = [
        Distribution.Distribution(p1, cov1),
        Distribution.Distribution(p2, cov2)
    ]
    p3 = np.matrix('0.5; 0.5')
    cov3 = np.matrix('5 0; 0 5')
    init_feat_distr = [Distribution.Distribution(p3, cov3)]

    data.init(2, 1, init_veh_distr, init_feat_distr)
    var_pos1 = 200
    var_pos2 = 200
    var_init = [[var_pos1, var_pos1], [var_pos2, var_pos2]]
    veh = algorithm.init_veh(2, 1, init_veh_distr, var_init)
    fea = algorithm.init_feat(1, 2, init_feat_distr)
    #print "Feature in listner" + str(fea)
    rospy.init_node('listener', anonymous=True)
    # rospy.Subscriber("position2", Pos, callback, queue_size=100)
    # spin() simply keeps python from exiting until this node is stopped
    #print "inside listener"
    pos = message_filters.Subscriber('position', Pos)
    pos2 = message_filters.Subscriber('position2', Pos)
    ts = message_filters.ApproximateTimeSynchronizer([pos, pos2], 2, 1)
    ts.registerCallback(callback)
    rospy.spin()
    error_mean_distance = [None for i in range(n_v)]


    for n_mp in range(1, rangeNmp):
        data = [None for i in range(runs)]
        meas = [None for i in range(runs)]
        error_square = [[None for i in range(runs)] for j in range(n_v)]
        error_distance = [[None for i in range(runs)] for j in range(n_v)]
        error = [None for i in range(n_v)]
        error_mean_distance = [None for i in range(n_v)]

        for run in range(runs):
            meas[run] = me.Measurement(n_v, n_f, 1)
            data[run] = DataCollect.DataCollect(n_v, n_f)
            data[run].init(n_v, n_f, init_veh_distr, init_feat_distr[:n_f])
            v = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr[:n_f], var_init)
            print('Nmp = '+str(n_mp))
            algorithm.main_loop(v, meas[run], n_mp, 1, data[run])
            for k in range(n_v):
                error_square[k][run] = np.power(data[run].get_veh_belief(k)[:2, :] - meas[run].mean_veh[k], 2)
                error_distance[k][run] = np.sum(error_square[k][run], axis = 0)
        for l in range(n_v):
            error[l] = np.mean(error_square[l], axis = 0)
            error_mean_distance[l] = np.mean(error_distance[l], axis = 0)
            collectMSE[l][n_mp-1] = np.mean(error_mean_distance[l][7:], axis=0)

    print collectMSE


    fontprop = FontProperties()
    fontprop.set_size('small')
Ejemplo n.º 3
0
def icp():

    global count, Gps_x0, Gps_y0, Gps_x1, Gps_y1, veh, fea, data
    if icp_bool:
        msg2 = ''' ( ICP Activated ) '''
    if not icp_bool:
        msg2 = ''' ( ICP De-Activated ) '''
    print "-------------------------------- ****** Run " + str(count) + str(
        msg2) + " ****** --------------------------------"
    if count == 0:
        n_v = 2
        n_f = 1
        p1 = np.matrix([[Gps_x0], [Gps_y0], [0], [0]])
        p2 = np.matrix([[Gps_x1], [Gps_y1], [0], [0]])
        cov1 = np.matrix('10 0 0 0; ' '0 10 0 0; ' '0 0 1 0; ' '0 0 0 1')
        cov2 = np.matrix('10 0 0 0; ' '0 10 0 0; ' '0 0 1 0; ' '0 0 0 1')
        init_veh_distr = [
            Distribution.Distribution(p1, cov1),
            Distribution.Distribution(p2, cov2)
        ]
        p3 = np.matrix('1.7; 0.5')
        cov3 = np.matrix('10 0; 0 10')
        init_feat_distr = [Distribution.Distribution(p3, cov3)]
        q0 = 1.0e-2
        q1 = 1.0e-2
        var_init = [q0, q1]
        data = DataCollect.DataCollect(n_v, n_f)
        data.init(n_v, n_f, init_veh_distr, init_feat_distr)
        veh = algorithm.init_veh(n_v, n_f, init_veh_distr, init_feat_distr,
                                 var_init)

    count = count + 1
    start_time = rospy.get_time()
    if (Gps_x0 and Gps_x1 and Gps_y0 and Gps_y1) is not None:
        mean_v = [
            np.matrix([[Gps_x0], [Gps_y0]]),
            np.matrix([[Gps_x1], [Gps_y1]])
        ]
        mean_f = [[
            np.matrix([[float(feat11_x) / 1000], [float(feat11_y) / 1000]]),
            np.matrix([[float(feat21_x) / 1000], [float(feat21_y) / 1000]])
        ]]
        #data = DataCollect.DataCollect(2, 1)
        meas = me.MeasurementMixer(2, 1, mean_v, mean_f)
        print "Feature 1 Measurement X = " + str(float(
            meas.meas_fea[0][0][0])) + " , Y = " + str(
                float(meas.meas_fea[0][0][1]))
        print "Feature 2 Measurement X = " + str(float(
            meas.meas_fea[0][1][0])) + " , Y = " + str(
                float(meas.meas_fea[0][1][1]))
        print "Vehicle 1 Measurement X = " + str(float(
            meas.meas_veh[0][0])) + " , Y = " + str(float(meas.meas_veh[0][1]))
        print "Vehicle 2 Measurement X = " + str(float(
            meas.meas_veh[1][0])) + " , Y = " + str(float(meas.meas_veh[1][1]))
        #print v
        #print "Feature in callback" + str(fea)
        for v in veh:
            v.update_time_step(T_s)
        algorithm.main_loop(veh, meas, 2, 1, data)
        actual1 = data.get_veh_belief(0)
        actual2 = data.get_veh_belief(1)
        last_x0 = actual1[0][-1]
        last_y0 = actual1[1][-1]
        last_x1 = actual2[0][-1]
        last_y1 = actual2[1][-1]
        x_coord0 = float(meas.meas_veh[0][0])
        y_coord0 = float(meas.meas_veh[0][1])
        x_coord1 = float(meas.meas_veh[1][0])
        y_coord1 = float(meas.meas_veh[1][1])

        print 'Vehicle 1 ICP X = ' + str(last_x0) + ', Y = ' + str(last_y0)
        print 'Vehicle 2 ICP X = ' + str(last_x1) + ', Y = ' + str(last_y1)
        global T_s
        stop_time = rospy.get_time()
        # T_s = stop_time - start_time
        print T_s, "Sampling Time"
        print str(count) + "Runs"

        vehicle0 = Vehicle()
        vehicle0.heading = angle0
        vehicle0.header.stamp = rospy.get_rostime()
        vehicle0.x_meas = x_coord0
        vehicle0.y_meas = y_coord0
        vehicle0.x_icp = last_x0
        vehicle0.y_icp = last_y0
        vehicle0.x_actual_meas = Gps_x0
        vehicle0.y_actual_meas = Gps_y0

        vehicle1 = Vehicle()
        vehicle1.heading = angle1
        vehicle1.header.stamp = rospy.get_rostime()
        vehicle1.x_meas = x_coord1
        vehicle1.y_meas = y_coord1
        vehicle1.x_icp = last_x1
        vehicle1.y_icp = last_y1
        vehicle1.x_actual_meas = Gps_x1
        vehicle1.y_actual_meas = Gps_y1

        pub0 = rospy.Publisher("Robot0/config", Vehicle, queue_size=10)
        pub1 = rospy.Publisher("Robot1/config", Vehicle, queue_size=10)
        pub0.publish(vehicle0)
        pub1.publish(vehicle1)
        print "Heading Angle Robot 0: " + str(angle0)
        print "Heading Angle Robot 1: " + str(angle1)
Ejemplo n.º 4
0
        Distribution.Distribution(p2, cov2)
    ]

    p3 = np.matrix('0.5; 0.5')
    cov3 = np.matrix('5 0; 0 5')
    init_feat_distr = [Distribution.Distribution(p3, cov3)]

    data.init(2, 1, init_veh_distr, init_feat_distr)

    var_pos1 = 2
    var_pos2 = 2
    var_init = [[var_pos1, var_pos1], [var_pos2, var_pos2]]

    while count < 1000:
        meas = me.Measurement(2, 1)
        v = algorithm.init_veh(2, 1, init_veh_distr, var_init)
        f = algorithm.init_feat(1, 2, init_feat_distr)
        algorithm.main_loop(v, f, meas, 7, 1, data)
        ++count

    x_pos_est0, y_pos_est0 = data.get_veh_belief(0)
    x_pos_pred0, y_pos_pred0 = data.get_pred_veh_belief(0)
    x_pos_est1, y_pos_est1 = data.get_veh_belief(1)
    x_pos_pred1, y_pos_pred1 = data.get_pred_veh_belief(1)

    error0 = [
        Kalman.rmse(data.get_veh_belief(0)[0][1:], meas.mean_veh[0][0]),
        Kalman.rmse(data.get_veh_belief(0)[1][1:], meas.mean_veh[0][1])
    ]
    errorP0 = [
        np.sqrt(v[0].pos_belief.get_cov()[0, 0]),