Ejemplo n.º 1
0
class Agent(SACAgent):
    """SAC agent interacting with environment.

    Attrtibutes:
        memory (ReplayBuffer): replay memory
        demo_memory (ReplayBuffer): replay memory for demo
        her (HER): hinsight experience replay
        transitions_epi (list): transitions per episode (for HER)
        goal_state (np.ndarray): goal state to generate concatenated states
        total_step (int): total step numbers
        episode_step (int): step number of the current episode

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params["USE_HER"]:
            self.her = HER(self.args.demo_path)
            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1,))
            self.hook_transition = True
            demo = self.her.generate_demo_transitions(demo)

        if not self.args.test:
            # Replay buffers
            self.demo_memory = ReplayBuffer(
                len(demo), self.hyper_params["DEMO_BATCH_SIZE"]
            )
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(
                self.hyper_params["BUFFER_SIZE"], self.hyper_params["BATCH_SIZE"]
            )

            # set hyper parameters
            self.lambda1 = self.hyper_params["LAMBDA1"]
            self.lambda2 = (
                self.hyper_params["LAMBDA2"] / self.hyper_params["DEMO_BATCH_SIZE"]
            )

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        state_ = state

        # HER
        if self.hyper_params["USE_HER"]:
            self.desired_state = self.her.sample_desired_state()
            state = np.concatenate((state, self.desired_state), axis=-1)

        selected_action = SACAgent.select_action(self, state)
        self.curr_state = state_

        return selected_action

    def step(self, action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool]:
        """Take an action and return the response of the env."""
        next_state, reward, done = SACAgent.step(self, action)

        if not self.args.test and self.hyper_params["USE_HER"]:
            self.transitions_epi.append(self.hooked_transition)
            if done:
                # insert generated transitions if the episode is done
                transitions = self.her.generate_transitions(
                    self.transitions_epi, self.desired_state
                )
                self.memory.extend(transitions)

        return next_state, reward, done

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences = self.memory.sample()
        demos = self.demo_memory.sample()

        states, actions, rewards, next_states, dones = experiences
        demo_states, demo_actions, _, _, _ = demos
        new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states)
        pred_actions, _, _, _, _ = self.actor(demo_states)

        # train alpha
        if self.hyper_params["AUTO_ENTROPY_TUNING"]:
            alpha_loss = (
                -self.log_alpha * (log_prob + self.target_entropy).detach()
            ).mean()

            self.alpha_optimizer.zero_grad()
            alpha_loss.backward()
            self.alpha_optimizer.step()

            alpha = self.log_alpha.exp()
        else:
            alpha_loss = torch.zeros(1)
            alpha = self.hyper_params["W_ENTROPY"]

        # Q function loss
        masks = 1 - dones
        q_1_pred = self.qf_1(states, actions)
        q_2_pred = self.qf_2(states, actions)
        v_target = self.vf_target(next_states)
        q_target = rewards + self.hyper_params["GAMMA"] * v_target * masks
        qf_1_loss = F.mse_loss(q_1_pred, q_target.detach())
        qf_2_loss = F.mse_loss(q_2_pred, q_target.detach())

        # V function loss
        v_pred = self.vf(states)
        q_pred = torch.min(
            self.qf_1(states, new_actions), self.qf_2(states, new_actions)
        )
        v_target = q_pred - alpha * log_prob
        vf_loss = F.mse_loss(v_pred, v_target.detach())

        # train Q functions
        self.qf_1_optimizer.zero_grad()
        qf_1_loss.backward()
        self.qf_1_optimizer.step()

        self.qf_2_optimizer.zero_grad()
        qf_2_loss.backward()
        self.qf_2_optimizer.step()

        # train V function
        self.vf_optimizer.zero_grad()
        vf_loss.backward()
        self.vf_optimizer.step()

        if self.total_step % self.hyper_params["DELAYED_UPDATE"] == 0:
            # bc loss
            qf_mask = torch.gt(
                self.qf_1(demo_states, demo_actions),
                self.qf_1(demo_states, pred_actions),
            ).to(device)
            qf_mask = qf_mask.float()
            n_qf_mask = int(qf_mask.sum().item())

            if n_qf_mask == 0:
                bc_loss = torch.zeros(1, device=device)
            else:
                bc_loss = (
                    torch.mul(pred_actions, qf_mask) - torch.mul(demo_actions, qf_mask)
                ).pow(2).sum() / n_qf_mask

            # actor loss
            advantage = q_pred - v_pred.detach()
            actor_loss = (alpha * log_prob - advantage).mean()
            actor_loss = self.lambda1 * actor_loss + self.lambda2 * bc_loss

            # regularization
            if not self.is_discrete:  # iff the action is continuous
                mean_reg = self.hyper_params["W_MEAN_REG"] * mu.pow(2).mean()
                std_reg = self.hyper_params["W_STD_REG"] * std.pow(2).mean()
                pre_activation_reg = self.hyper_params["W_PRE_ACTIVATION_REG"] * (
                    pre_tanh_value.pow(2).sum(dim=-1).mean()
                )
                actor_reg = mean_reg + std_reg + pre_activation_reg

                # actor loss + regularization
                actor_loss += actor_reg

            # train actor
            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            self.actor_optimizer.step()

            # update target networks
            common_utils.soft_update(self.vf, self.vf_target, self.hyper_params["TAU"])
        else:
            actor_loss = torch.zeros(1)

        return (
            actor_loss.data,
            qf_1_loss.data,
            qf_2_loss.data,
            vf_loss.data,
            alpha_loss.data,
        )
Ejemplo n.º 2
0
class Agent(DDPGAgent):
    """ActorCritic interacting with environment.

    Attributes:
        memory (ReplayBuffer): replay memory
        demo_memory (ReplayBuffer): replay memory for demo
        her (HER): hinsight experience replay
        transitions_epi (list): transitions per episode (for HER)
        goal_state (np.ndarray): goal state to generate concatenated states
        total_step (int): total step numbers
        episode_step (int): step number of the current episode

    """

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params["USE_HER"]:
            self.her = HER(self.args.demo_path)
            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1, ))
            self.hook_transition = True
            demo = self.her.generate_demo_transitions(demo)

        if not self.args.test:
            # Replay buffers
            demo_batch_size = self.hyper_params["DEMO_BATCH_SIZE"]
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(self.hyper_params["BUFFER_SIZE"],
                                       self.hyper_params["BATCH_SIZE"])

            # set hyper parameters
            self.lambda1 = self.hyper_params["LAMBDA1"]
            self.lambda2 = self.hyper_params["LAMBDA2"] / demo_batch_size

    def select_action(self, state: np.ndarray) -> np.ndarray:
        """Select an action from the input space."""
        state_ = state
        if self.hyper_params["USE_HER"]:
            self.desired_state = self.her.sample_desired_state()
            state = np.concatenate((state, self.desired_state), axis=-1)

        selected_action = DDPGAgent.select_action(self, state)
        self.curr_state = state_

        return selected_action

    def step(self, action: np.ndarray) -> Tuple[np.ndarray, np.float64, bool]:
        """Take an action and return the response of the env."""
        next_state, reward, done = DDPGAgent.step(self, action)

        if not self.args.test and self.hyper_params["USE_HER"]:
            self.transitions_epi.append(self.hooked_transition)
            if done:
                # insert generated transitions if the episode is done
                transitions = self.her.generate_transitions(
                    self.transitions_epi, self.desired_state)
                self.memory.extend(transitions)

        return next_state, reward, done

    def update_model(self) -> Tuple[torch.Tensor, torch.Tensor]:
        """Train the model after each episode."""
        experiences = self.memory.sample()
        demos = self.demo_memory.sample()
        exp_states, exp_actions, exp_rewards, exp_next_states, exp_dones = experiences
        demo_states, demo_actions, demo_rewards, demo_next_states, demo_dones = demos

        states = torch.cat((exp_states, demo_states), dim=0)
        actions = torch.cat((exp_actions, demo_actions), dim=0)
        rewards = torch.cat((exp_rewards, demo_rewards), dim=0)
        next_states = torch.cat((exp_next_states, demo_next_states), dim=0)
        dones = torch.cat((exp_dones, demo_dones), dim=0)

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        masks = 1 - dones
        next_actions = self.actor_target(next_states)
        next_values = self.critic_target(
            torch.cat((next_states, next_actions), dim=-1))
        curr_returns = rewards + (self.hyper_params["GAMMA"] * next_values *
                                  masks)
        curr_returns = curr_returns.to(device)

        # critic loss
        values = self.critic(torch.cat((states, actions), dim=-1))
        critic_loss = F.mse_loss(values, curr_returns)

        # train critic
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()

        # policy loss
        actions = self.actor(states)
        policy_loss = -self.critic(torch.cat((states, actions), dim=-1)).mean()

        # bc loss
        pred_actions = self.actor(demo_states)
        qf_mask = torch.gt(
            self.critic(torch.cat((demo_states, demo_actions), dim=-1)),
            self.critic(torch.cat((demo_states, pred_actions), dim=-1)),
        ).to(device)
        qf_mask = qf_mask.float()
        n_qf_mask = int(qf_mask.sum().item())

        if n_qf_mask == 0:
            bc_loss = torch.zeros(1, device=device)
        else:
            bc_loss = (torch.mul(pred_actions, qf_mask) - torch.mul(
                demo_actions, qf_mask)).pow(2).sum() / n_qf_mask

        # train actor: pg loss + BC loss
        actor_loss = self.lambda1 * policy_loss + self.lambda2 * bc_loss

        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # update target networks
        tau = self.hyper_params["TAU"]
        common_utils.soft_update(self.actor, self.actor_target, tau)
        common_utils.soft_update(self.critic, self.critic_target, tau)

        return actor_loss.data, critic_loss.data
Ejemplo n.º 3
0
class Agent(AbstractAgent):
    """SAC agent interacting with environment.

    Attrtibutes:
        memory (ReplayBuffer): replay memory
        actor (nn.Module): actor model to select actions
        actor_target (nn.Module): target actor model to select actions
        actor_optimizer (Optimizer): optimizer for training actor
        critic_1 (nn.Module): critic model to predict state values
        critic_2 (nn.Module): critic model to predict state values
        critic_target1 (nn.Module): target critic model to predict state values
        critic_target2 (nn.Module): target critic model to predict state values
        critic_optimizer1 (Optimizer): optimizer for training critic_1
        critic_optimizer2 (Optimizer): optimizer for training critic_2
        curr_state (np.ndarray): temporary storage of the current state
        target_entropy (int): desired entropy used for the inequality constraint
        alpha (torch.Tensor): weight for entropy
        alpha_optimizer (Optimizer): optimizer for alpha
        hyper_params (dict): hyper-parameters
        total_step (int): total step numbers
        episode_step (int): step number of the current episode
        i_episode (int): current episode number
        her (HER): hinsight experience replay

    """
    def __init__(self, env, args, hyper_params, models, optims, target_entropy,
                 her):
        """Initialization.

        Args:
            env (gym.Env): openAI Gym environment
            args (argparse.Namespace): arguments including hyperparameters and training settings
            hyper_params (dict): hyper-parameters
            models (tuple): models including actor and critic
            optims (tuple): optimizers for actor and critic
            target_entropy (float): target entropy for the inequality constraint
            her (HER): hinsight experience replay

        """
        AbstractAgent.__init__(self, env, args)

        self.actor, self.vf, self.vf_target, self.qf_1, self.qf_2 = models
        self.actor_optimizer, self.vf_optimizer = optims[0:2]
        self.qf_1_optimizer, self.qf_2_optimizer = optims[2:4]
        self.hyper_params = hyper_params
        self.curr_state = np.zeros((1, ))
        self.total_step = 0
        self.episode_step = 0
        self.i_episode = 0
        self.her = her

        # automatic entropy tuning
        if self.hyper_params["AUTO_ENTROPY_TUNING"]:
            self.target_entropy = target_entropy
            self.log_alpha = torch.zeros(1, requires_grad=True, device=device)
            self.alpha_optimizer = optim.Adam(
                [self.log_alpha], lr=self.hyper_params["LR_ENTROPY"])

        # load the optimizer and model parameters
        if args.load_from is not None and os.path.exists(args.load_from):
            self.load_params(args.load_from)

        self._initialize()

    def _initialize(self):
        """Initialize non-common things."""
        if not self.args.test:
            # replay memory
            self.memory = ReplayBuffer(self.hyper_params["BUFFER_SIZE"],
                                       self.hyper_params["BATCH_SIZE"])

        # HER
        if self.hyper_params["USE_HER"]:
            # load demo replay memory
            with open(self.args.demo_path, "rb") as f:
                demo = pickle.load(f)

            if self.hyper_params["DESIRED_STATES_FROM_DEMO"]:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi = list()
            self.desired_state = np.zeros((1, ))
            demo = self.her.generate_demo_transitions(demo)

        if not self.args.test:
            # Replay buffers
            self.memory = ReplayBuffer(self.hyper_params["BUFFER_SIZE"],
                                       self.hyper_params["BATCH_SIZE"])

    def _preprocess_state(self, state):
        """Preprocess state so that actor selects an action."""
        if self.hyper_params["USE_HER"]:
            self.desired_state = self.her.get_desired_state()
            state = np.concatenate((state, self.desired_state), axis=-1)
        state = torch.FloatTensor(state).to(device)
        return state

    def _add_transition_to_memory(self, transition):
        """Add 1 step and n step transitions to memory."""
        if self.hyper_params["USE_HER"]:
            self.transitions_epi.append(transition)
            done = transition[
                -1] or self.episode_step == self.args.max_episode_steps
            if done:
                # insert generated transitions if the episode is done
                transitions = self.her.generate_transitions(
                    self.transitions_epi,
                    self.desired_state,
                    self.hyper_params["SUCCESS_SCORE"],
                )
                self.memory.extend(transitions)
                self.transitions_epi = list()
        else:
            self.memory.add(*transition)

    def select_action(self, state):
        """Select an action from the input space."""
        self.curr_state = state
        state = self._preprocess_state(state)

        # if initial random action should be conducted
        if (self.total_step < self.hyper_params["INITIAL_RANDOM_ACTION"]
                and not self.args.test):
            return self.env.action_space.sample()

        if self.args.test:
            _, _, _, selected_action, _ = self.actor(state)
        else:
            selected_action, _, _, _, _ = self.actor(state)

        return selected_action.detach().cpu().numpy()

    def step(self, action):
        """Take an action and return the response of the env."""
        self.total_step += 1
        self.episode_step += 1

        next_state, reward, done, _ = self.env.step(action)

        if not self.args.test:
            # if the last state is not a terminal state, store done as false
            done_bool = (False if self.episode_step
                         == self.args.max_episode_steps else done)
            transition = (self.curr_state, action, reward, next_state,
                          done_bool)
            self._add_transition_to_memory(transition)

        return next_state, reward, done

    def update_model(self, experiences):
        """Train the model after each episode."""
        states, actions, rewards, next_states, dones = experiences
        new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states)

        # train alpha
        if self.hyper_params["AUTO_ENTROPY_TUNING"]:
            alpha_loss = (-self.log_alpha *
                          (log_prob + self.target_entropy).detach()).mean()

            self.alpha_optimizer.zero_grad()
            alpha_loss.backward()
            self.alpha_optimizer.step()

            alpha = self.log_alpha.exp()
        else:
            alpha_loss = torch.zeros(1)
            alpha = self.hyper_params["W_ENTROPY"]

        # Q function loss
        masks = 1 - dones
        q_1_pred = self.qf_1(states, actions)
        q_2_pred = self.qf_2(states, actions)
        v_target = self.vf_target(next_states)
        q_target = rewards + self.hyper_params["GAMMA"] * v_target * masks
        qf_1_loss = F.mse_loss(q_1_pred, q_target.detach())
        qf_2_loss = F.mse_loss(q_2_pred, q_target.detach())

        # V function loss
        v_pred = self.vf(states)
        q_pred = torch.min(self.qf_1(states, new_actions),
                           self.qf_2(states, new_actions))
        v_target = q_pred - alpha * log_prob
        vf_loss = F.mse_loss(v_pred, v_target.detach())

        # train Q functions
        self.qf_1_optimizer.zero_grad()
        qf_1_loss.backward()
        self.qf_1_optimizer.step()

        self.qf_2_optimizer.zero_grad()
        qf_2_loss.backward()
        self.qf_2_optimizer.step()

        # train V function
        self.vf_optimizer.zero_grad()
        vf_loss.backward()
        self.vf_optimizer.step()

        if self.total_step % self.hyper_params["DELAYED_UPDATE"] == 0:
            # actor loss
            advantage = q_pred - v_pred.detach()
            actor_loss = (alpha * log_prob - advantage).mean()

            # regularization
            mean_reg = self.hyper_params["W_MEAN_REG"] * mu.pow(2).mean()
            std_reg = self.hyper_params["W_STD_REG"] * std.pow(2).mean()
            pre_activation_reg = self.hyper_params["W_PRE_ACTIVATION_REG"] * (
                pre_tanh_value.pow(2).sum(dim=-1).mean())
            actor_reg = mean_reg + std_reg + pre_activation_reg

            # actor loss + regularization
            actor_loss += actor_reg

            # train actor
            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            self.actor_optimizer.step()

            # update target networks
            common_utils.soft_update(self.vf, self.vf_target,
                                     self.hyper_params["TAU"])
        else:
            actor_loss = torch.zeros(1)

        return (
            actor_loss.data,
            qf_1_loss.data,
            qf_2_loss.data,
            vf_loss.data,
            alpha_loss.data,
        )

    def load_params(self, path):
        """Load model and optimizer parameters."""
        if not os.path.exists(path):
            print("[ERROR] the input path does not exist. ->", path)
            return

        params = torch.load(path)
        self.actor.load_state_dict(params["actor"])
        self.qf_1.load_state_dict(params["qf_1"])
        self.qf_2.load_state_dict(params["qf_2"])
        self.vf.load_state_dict(params["vf"])
        self.vf_target.load_state_dict(params["vf_target"])
        self.actor_optimizer.load_state_dict(params["actor_optim"])
        self.qf_1_optimizer.load_state_dict(params["qf_1_optim"])
        self.qf_2_optimizer.load_state_dict(params["qf_2_optim"])
        self.vf_optimizer.load_state_dict(params["vf_optim"])

        if self.hyper_params["AUTO_ENTROPY_TUNING"]:
            self.alpha_optimizer.load_state_dict(params["alpha_optim"])

        print("[INFO] loaded the model and optimizer from", path)

    def save_params(self, n_episode):
        """Save model and optimizer parameters."""
        params = {
            "actor": self.actor.state_dict(),
            "qf_1": self.qf_1.state_dict(),
            "qf_2": self.qf_2.state_dict(),
            "vf": self.vf.state_dict(),
            "vf_target": self.vf_target.state_dict(),
            "actor_optim": self.actor_optimizer.state_dict(),
            "qf_1_optim": self.qf_1_optimizer.state_dict(),
            "qf_2_optim": self.qf_2_optimizer.state_dict(),
            "vf_optim": self.vf_optimizer.state_dict(),
        }

        if self.hyper_params["AUTO_ENTROPY_TUNING"]:
            params["alpha_optim"] = self.alpha_optimizer.state_dict()

        AbstractAgent.save_params(self, params, n_episode)

    def write_log(self, i, loss, score=0.0, delayed_update=1):
        """Write log about loss and score"""
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode_step %d, total step %d, total score: %d\n"
            "total loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f "
            "vf_loss: %.3f alpha_loss: %.3f\n" % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0] * delayed_update,  # actor loss
                loss[1],  # qf_1 loss
                loss[2],  # qf_2 loss
                loss[3],  # vf loss
                loss[4],  # alpha loss
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "total loss": total_loss,
                "actor loss": loss[0] * delayed_update,
                "qf_1 loss": loss[1],
                "qf_2 loss": loss[2],
                "vf loss": loss[3],
                "alpha loss": loss[4],
            })

    def train(self):
        """Train the agent."""
        # logger
        if self.args.log:
            wandb.init()
            wandb.config.update(self.hyper_params)
            wandb.config.update(vars(self.args))
            wandb.watch([self.actor, self.vf, self.qf_1, self.qf_2],
                        log="parameters")

        for self.i_episode in range(1, self.args.episode_num + 1):
            state = self.env.reset()
            done = False
            score = 0
            self.episode_step = 0
            loss_episode = list()

            while not done:
                if self.args.render and self.i_episode >= self.args.render_after:
                    self.env.render()

                action = self.select_action(state)
                next_state, reward, done = self.step(action)

                state = next_state
                score += reward

                # training
                if len(self.memory) >= self.hyper_params["BATCH_SIZE"]:
                    experiences = self.memory.sample()
                    loss = self.update_model(experiences)
                    loss_episode.append(loss)  # for logging

            # logging
            if loss_episode:
                avg_loss = np.vstack(loss_episode).mean(axis=0)
                self.write_log(self.i_episode, avg_loss, score,
                               self.hyper_params["DELAYED_UPDATE"])

            if self.i_episode % self.args.save_period == 0:
                self.save_params(self.i_episode)

        # termination
        self.env.close()
Ejemplo n.º 4
0
class BCDDPGAgent(DDPGAgent):
    """BC with DDPG agent interacting with environment.

    Attributes:
        her (HER): hinsight experience replay
        transitions_epi (list): transitions per episode (for HER)
        desired_state (np.ndarray): desired state of current episode
        memory (ReplayBuffer): replay memory
        demo_memory (ReplayBuffer): replay memory for demo
        lambda1 (float): proportion of policy loss
        lambda2 (float): proportion of BC loss

    """

    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        hyper_params: dict,
        models: tuple,
        optims: tuple,
        noise: OUNoise,
        her: HER,
    ):
        """Initialization.
        Args:
            her (HER): hinsight experience replay

        """
        self.her = her
        DDPGAgent.__init__(self, env, args, hyper_params, models, optims, noise)

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params["USE_HER"]:
            if self.hyper_params["DESIRED_STATES_FROM_DEMO"]:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1,))
            demo = self.her.generate_demo_transitions(demo)

        if not self.args.test:
            # Replay buffers
            demo_batch_size = self.hyper_params["DEMO_BATCH_SIZE"]
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(
                self.hyper_params["BUFFER_SIZE"], self.hyper_params["BATCH_SIZE"]
            )

            # set hyper parameters
            self.lambda1 = self.hyper_params["LAMBDA1"]
            self.lambda2 = self.hyper_params["LAMBDA2"] / demo_batch_size

    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        if self.hyper_params["USE_HER"]:
            self.desired_state = self.her.get_desired_state()
            state = np.concatenate((state, self.desired_state), axis=-1)
        state = torch.FloatTensor(state).to(device)
        return state

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        if self.hyper_params["USE_HER"]:
            self.transitions_epi.append(transition)
            done = transition[-1] or self.episode_step == self.args.max_episode_steps
            if done:
                # insert generated transitions if the episode is done
                transitions = self.her.generate_transitions(
                    self.transitions_epi,
                    self.desired_state,
                    self.hyper_params["SUCCESS_SCORE"],
                )
                self.memory.extend(transitions)
                self.transitions_epi.clear()
        else:
            self.memory.add(transition)

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences = self.memory.sample()
        demos = self.demo_memory.sample()
        exp_states, exp_actions, exp_rewards, exp_next_states, exp_dones = experiences
        demo_states, demo_actions, demo_rewards, demo_next_states, demo_dones = demos

        states = torch.cat((exp_states, demo_states), dim=0)
        actions = torch.cat((exp_actions, demo_actions), dim=0)
        rewards = torch.cat((exp_rewards, demo_rewards), dim=0)
        next_states = torch.cat((exp_next_states, demo_next_states), dim=0)
        dones = torch.cat((exp_dones, demo_dones), dim=0)

        # G_t   = r + gamma * v(s_{t+1})  if state != Terminal
        #       = r                       otherwise
        masks = 1 - dones
        next_actions = self.actor_target(next_states)
        next_values = self.critic_target(torch.cat((next_states, next_actions), dim=-1))
        curr_returns = rewards + (self.hyper_params["GAMMA"] * next_values * masks)
        curr_returns = curr_returns.to(device)

        # critic loss
        values = self.critic(torch.cat((states, actions), dim=-1))
        critic_loss = F.mse_loss(values, curr_returns)

        # train critic
        gradient_clip_cr = self.hyper_params["GRADIENT_CLIP_CR"]
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        nn.utils.clip_grad_norm_(self.critic.parameters(), gradient_clip_cr)
        self.critic_optimizer.step()

        # policy loss
        actions = self.actor(states)
        policy_loss = -self.critic(torch.cat((states, actions), dim=-1)).mean()

        # bc loss
        pred_actions = self.actor(demo_states)
        qf_mask = torch.gt(
            self.critic(torch.cat((demo_states, demo_actions), dim=-1)),
            self.critic(torch.cat((demo_states, pred_actions), dim=-1)),
        ).to(device)
        qf_mask = qf_mask.float()
        n_qf_mask = int(qf_mask.sum().item())

        if n_qf_mask == 0:
            bc_loss = torch.zeros(1, device=device)
        else:
            bc_loss = (
                torch.mul(pred_actions, qf_mask) - torch.mul(demo_actions, qf_mask)
            ).pow(2).sum() / n_qf_mask

        # train actor: pg loss + BC loss
        actor_loss = self.lambda1 * policy_loss + self.lambda2 * bc_loss

        gradient_clip_ac = self.hyper_params["GRADIENT_CLIP_AC"]
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        nn.utils.clip_grad_norm_(self.actor.parameters(), gradient_clip_ac)
        self.actor_optimizer.step()

        # update target networks
        tau = self.hyper_params["TAU"]
        common_utils.soft_update(self.actor, self.actor_target, tau)
        common_utils.soft_update(self.critic, self.critic_target, tau)

        return actor_loss.item(), critic_loss.item(), n_qf_mask

    def write_log(self, i: int, loss: np.ndarray, score: int, avg_time_cost):
        """Write log about loss and score"""
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode step: %d, total step: %d, total score: %d\n"
            "total loss: %f actor_loss: %.3f critic_loss: %.3f, n_qf_mask: %d "
            "(spent %.6f sec/step)\n"
            % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0],
                loss[1],
                loss[2],
                avg_time_cost,
            )  # actor loss  # critic loss
        )

        if self.args.log:
            wandb.log(
                {
                    "score": score,
                    "total loss": total_loss,
                    "actor loss": loss[0],
                    "critic loss": loss[1],
                    "time per each step": avg_time_cost,
                }
            )
Ejemplo n.º 5
0
class Agent(SACAgent):
    """BC with SAC agent interacting with environment.

    Attrtibutes:
        HER (AbstractHER): hinsight experience replay
        transitions_epi (list): transitions per episode (for HER)
        desired_state (np.ndarray): desired state of current episode
        memory (ReplayBuffer): replay memory
        demo_memory (ReplayBuffer): replay memory for demo
        lambda1 (float): proportion of policy loss
        lambda2 (float): proportion of BC loss

    """
    def __init__(
        self,
        env: gym.Env,
        args: argparse.Namespace,
        hyper_params: dict,
        models: tuple,
        optims: tuple,
        target_entropy: float,
        HER: AbstractHER,
    ):
        """Initialization.
        Args:
            HER (AbstractHER): hinsight experience replay

        """
        self.HER = HER
        SACAgent.__init__(self, env, args, hyper_params, models, optims,
                          target_entropy)

    # pylint: disable=attribute-defined-outside-init
    def _initialize(self):
        """Initialize non-common things."""
        # load demo replay memory
        with open(self.args.demo_path, "rb") as f:
            demo = list(pickle.load(f))

        # HER
        if self.hyper_params["USE_HER"]:
            self.her = self.HER()
            if self.hyper_params["DESIRED_STATES_FROM_DEMO"]:
                self.her.fetch_desired_states_from_demo(demo)

            self.transitions_epi: list = list()
            self.desired_state = np.zeros((1, ))
            demo = self.her.generate_demo_transitions(demo)

        if not self.args.test:
            # Replay buffers
            demo_batch_size = self.hyper_params["DEMO_BATCH_SIZE"]
            self.demo_memory = ReplayBuffer(len(demo), demo_batch_size)
            self.demo_memory.extend(demo)

            self.memory = ReplayBuffer(self.hyper_params["BUFFER_SIZE"],
                                       self.hyper_params["BATCH_SIZE"])

            # set hyper parameters
            self.lambda1 = self.hyper_params["LAMBDA1"]
            self.lambda2 = self.hyper_params["LAMBDA2"] / demo_batch_size

    def _preprocess_state(self, state: np.ndarray) -> torch.Tensor:
        """Preprocess state so that actor selects an action."""
        if self.hyper_params["USE_HER"]:
            self.desired_state = self.her.get_desired_state()
            state = np.concatenate((state, self.desired_state), axis=-1)
        state = torch.FloatTensor(state).to(device)
        return state

    def _add_transition_to_memory(self, transition: Tuple[np.ndarray, ...]):
        """Add 1 step and n step transitions to memory."""
        if self.hyper_params["USE_HER"]:
            self.transitions_epi.append(transition)
            done = transition[
                -1] or self.episode_step == self.args.max_episode_steps
            if done:
                # insert generated transitions if the episode is done
                transitions = self.her.generate_transitions(
                    self.transitions_epi,
                    self.desired_state,
                    self.hyper_params["SUCCESS_SCORE"],
                )
                self.memory.extend(transitions)
                self.transitions_epi.clear()
        else:
            self.memory.add(*transition)

    def update_model(self) -> Tuple[torch.Tensor, ...]:
        """Train the model after each episode."""
        experiences = self.memory.sample()
        demos = self.demo_memory.sample()

        states, actions, rewards, next_states, dones = experiences
        demo_states, demo_actions, _, _, _ = demos
        new_actions, log_prob, pre_tanh_value, mu, std = self.actor(states)
        pred_actions, _, _, _, _ = self.actor(demo_states)

        # train alpha
        if self.hyper_params["AUTO_ENTROPY_TUNING"]:
            alpha_loss = (-self.log_alpha *
                          (log_prob + self.target_entropy).detach()).mean()

            self.alpha_optimizer.zero_grad()
            alpha_loss.backward()
            self.alpha_optimizer.step()

            alpha = self.log_alpha.exp()
        else:
            alpha_loss = torch.zeros(1)
            alpha = self.hyper_params["W_ENTROPY"]

        # Q function loss
        masks = 1 - dones
        q_1_pred = self.qf_1(states, actions)
        q_2_pred = self.qf_2(states, actions)
        v_target = self.vf_target(next_states)
        q_target = rewards + self.hyper_params["GAMMA"] * v_target * masks
        qf_1_loss = F.mse_loss(q_1_pred, q_target.detach())
        qf_2_loss = F.mse_loss(q_2_pred, q_target.detach())

        # V function loss
        v_pred = self.vf(states)
        q_pred = torch.min(self.qf_1(states, new_actions),
                           self.qf_2(states, new_actions))
        v_target = q_pred - alpha * log_prob
        vf_loss = F.mse_loss(v_pred, v_target.detach())

        # train Q functions
        self.qf_1_optimizer.zero_grad()
        qf_1_loss.backward()
        self.qf_1_optimizer.step()

        self.qf_2_optimizer.zero_grad()
        qf_2_loss.backward()
        self.qf_2_optimizer.step()

        # train V function
        self.vf_optimizer.zero_grad()
        vf_loss.backward()
        self.vf_optimizer.step()

        if self.total_step % self.hyper_params["DELAYED_UPDATE"] == 0:
            # bc loss
            qf_mask = torch.gt(
                self.qf_1(demo_states, demo_actions),
                self.qf_1(demo_states, pred_actions),
            ).to(device)
            qf_mask = qf_mask.float()
            n_qf_mask = int(qf_mask.sum().item())

            if n_qf_mask == 0:
                bc_loss = torch.zeros(1, device=device)
            else:
                bc_loss = (torch.mul(pred_actions, qf_mask) - torch.mul(
                    demo_actions, qf_mask)).pow(2).sum() / n_qf_mask

            # actor loss
            advantage = q_pred - v_pred.detach()
            actor_loss = (alpha * log_prob - advantage).mean()
            actor_loss = self.lambda1 * actor_loss + self.lambda2 * bc_loss

            # regularization
            if not self.is_discrete:  # iff the action is continuous
                mean_reg = self.hyper_params["W_MEAN_REG"] * mu.pow(2).mean()
                std_reg = self.hyper_params["W_STD_REG"] * std.pow(2).mean()
                pre_activation_reg = self.hyper_params[
                    "W_PRE_ACTIVATION_REG"] * (pre_tanh_value.pow(2).sum(
                        dim=-1).mean())
                actor_reg = mean_reg + std_reg + pre_activation_reg

                # actor loss + regularization
                actor_loss += actor_reg

            # train actor
            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            self.actor_optimizer.step()

            # update target networks
            common_utils.soft_update(self.vf, self.vf_target,
                                     self.hyper_params["TAU"])
        else:
            actor_loss = torch.zeros(1)
            n_qf_mask = 0

        return (
            actor_loss.data,
            qf_1_loss.data,
            qf_2_loss.data,
            vf_loss.data,
            alpha_loss.data,
            n_qf_mask,
        )

    def write_log(self,
                  i: int,
                  loss: np.ndarray,
                  score: float = 0.0,
                  delayed_update: int = 1):
        """Write log about loss and score"""
        total_loss = loss.sum()

        print(
            "[INFO] episode %d, episode_step %d, total step %d, total score: %d\n"
            "total loss: %.3f actor_loss: %.3f qf_1_loss: %.3f qf_2_loss: %.3f "
            "vf_loss: %.3f alpha_loss: %.3f n_qf_mask: %d\n" % (
                i,
                self.episode_step,
                self.total_step,
                score,
                total_loss,
                loss[0] * delayed_update,  # actor loss
                loss[1],  # qf_1 loss
                loss[2],  # qf_2 loss
                loss[3],  # vf loss
                loss[4],  # alpha loss
                loss[5],  # n_qf_mask
            ))

        if self.args.log:
            wandb.log({
                "score": score,
                "total loss": total_loss,
                "actor loss": loss[0] * delayed_update,
                "qf_1 loss": loss[1],
                "qf_2 loss": loss[2],
                "vf loss": loss[3],
                "alpha loss": loss[4],
            })