Ejemplo n.º 1
0
    def test_discretized(self):
        n = 11
        min_action = -10.0
        max_action = 10.0
        space = Discretized(n, min_action, max_action)
        random_action = space.sample()
        self.assertGreaterEqual(random_action, 0)
        self.assertLess(random_action, n)

        expected_value = min_action
        step = (max_action - min_action) / (n - 1)
        for action in range(n):
            continuous_action = space.to_continuous(action)
            self.assertAlmostEqual(continuous_action, expected_value)
            expected_value += step
Ejemplo n.º 2
0
def doom_action_space_full_discretized(with_use=False):
    """
        MOVE_FORWARD
        MOVE_BACKWARD
        MOVE_RIGHT
        MOVE_LEFT
        SELECT_WEAPON1
        SELECT_WEAPON2
        SELECT_WEAPON3
        SELECT_WEAPON4
        SELECT_WEAPON5
        SELECT_WEAPON6
        SELECT_WEAPON7
        ATTACK
        SPEED
        TURN_LEFT_RIGHT_DELTA
    """
    spaces = [
        Discrete(3),  # noop, forward, backward
        Discrete(3),  # noop, move right, move left
        Discrete(8),  # noop, select weapons 1-7
        Discrete(2),  # noop, attack
        Discrete(2),  # noop, sprint
    ]
    if with_use:
        spaces.append(Discrete(2))  # noop, use

    spaces.append(Discretized(
        21, min_action=-12.5,
        max_action=12.5))  # turning using discretized continuous control

    return gym.spaces.Tuple(spaces)
Ejemplo n.º 3
0
def doom_action_space_discretized_no_weap():
    return gym.spaces.Tuple((
        Discrete(3),  # noop, forward, backward
        Discrete(3),  # noop, move right, move left
        Discrete(2),  # noop, attack
        Discrete(2),  # noop, sprint
        Discretized(
            11, min_action=-10.0,
            max_action=10.0),  # turning using discretized continuous control
    ))