Ejemplo n.º 1
0
def init_od_prophet(state_dict: Dict) -> OutlierProphet:
    """
    Initialize OutlierProphet.

    Parameters
    ----------
    state_dict
        Dictionary containing the parameter values.

    Returns
    -------
    Initialized OutlierProphet instance.
    """
    od = OutlierProphet(cap=state_dict['cap'])
    od.model = state_dict['model']
    return od
Ejemplo n.º 2
0
def test_prophet(prophet_params):
    import fbprophet
    growth, return_instance_score, return_forecast = prophet_params
    od = OutlierProphet(growth=growth)
    assert isinstance(od.model, fbprophet.forecaster.Prophet)
    assert od.meta == {'name': 'OutlierProphet', 'detector_type': 'offline', 'data_type': 'time-series',
                       'version': __version__}
    if growth == 'logistic':
        df_fit['cap'] = 10.
        df_test['cap'] = 10.
    od.fit(df_fit)
    forecast = od.score(df_test)
    fcst_cols = list(forecast.columns)
    check_cols = ['ds', 'yhat', 'yhat_lower', 'yhat_upper', 'score', 'y']
    assert all(check_col in fcst_cols for check_col in check_cols)
    od_preds = od.predict(df_test,
                          return_instance_score=return_instance_score,
                          return_forecast=return_forecast)
    assert od_preds['meta'] == od.meta
    assert (od_preds['data']['is_outlier']['ds'] == df_test['ds']).all()
    assert od_preds['data']['is_outlier']['is_outlier'].shape[0] == df_test['ds'].shape[0]
    if not return_instance_score:
        assert od_preds['data']['instance_score'] is None
    if not return_forecast:
        with pytest.raises(KeyError):
            od_preds['data']['forecast']
Ejemplo n.º 3
0
    OutlierAEGMM(threshold=threshold,
                 gmm_density_net=gmm_density_net,
                 n_gmm=n_gmm,
                 **kwargs),
    OutlierVAE(threshold=threshold,
               latent_dim=latent_dim,
               samples=samples,
               **kwargs),
    OutlierAE(threshold=threshold, **kwargs),
    OutlierVAEGMM(threshold=threshold,
                  gmm_density_net=gmm_density_net,
                  n_gmm=n_gmm,
                  latent_dim=latent_dim,
                  samples=samples,
                  **kwargs),
    OutlierProphet(threshold=.7, growth='logistic'),
    SpectralResidual(threshold=threshold, window_amp=10, window_local=10),
    OutlierSeq2Seq(input_dim,
                   seq_len,
                   threshold=threshold,
                   threshold_net=threshold_net,
                   latent_dim=latent_dim)
]
n_tests = len(detector)


@pytest.fixture
def select_detector(request):
    return detector[request.param]