Ejemplo n.º 1
0
    def BranchDecClone(self, seq_list, clone_frequency, Tu2CNV):
        Align = MegaAlignment()
        TumorSampleExtract = tsp_information(self.tsp_list)
        CloFreAna = CloneFrequencyAnalizer()
        CloOrder, Clo2Seq = Align.name2seq(seq_list)
        Align.save_mega_alignment_to_file('Test.meg', seq_list)
        tree_builder = MegaMP()
        tree_builder.mao_file = self.mao_file
        id = 'branchdec_mega_alignment'

        status = tree_builder.do_mega_mp(seq_list, id)
        if status == True:
            seqs_with_ancestor, tree, nade_map, mask_seq, Good_posi_info = tree_builder.alignment_least_back_parallel_muts(
                True
            )  # True will execute code to remove redundant seqs (True is default)
        else:
            print 'failed to run megaMP'
        BadPosiLs = []  #multiple mutations
        BadPosi2ChnageCloLs = {}
        for c in Good_posi_info:
            Posi_Inf = Good_posi_info[c]
            if Posi_Inf != ['Good']:
                if Posi_Inf[0] == 'ToWild':
                    BadPosiLs.append(c)
                    BadPosi2ChnageCloLs[c] = Posi_Inf[1][0]
        print 'bad positions', BadPosiLs  #,BadPosi2ChnageCloLs
        if BadPosiLs != []:
            NewT2C2F = {}
            NewT2Cls = {}
            for Tu in clone_frequency:
                NewC2F = {}
                single_tsp_list = TumorSampleExtract.make_single_tsp_list(Tu)
                CloFreDic = clone_frequency[Tu]
                CNV = Tu2CNV[Tu[2:]]
                Tu = Tu[2:]
                TuSeq = self.tumor2seq['#' + Tu]
                NewCloLs = []
                NewCloLs1 = []

                for Clo in CloFreDic:  #original hit clo for the tumor
                    ChangeOptions = 'n'
                    #   print Tu,CloFreDic
                    if CloFreDic[Clo] > 0:
                        CSeq0 = Clo2Seq['#' + Clo]
                        ChangePosi = []  #list to fix multiple mutaitons
                        NewBadPosi = [
                        ]  #remove fixed multiple mutations from BadExtMutPosi
                        for Bad in BadPosi2ChnageCloLs:
                            if BadPosi2ChnageCloLs[Bad].count(
                                    '#' + Clo) != 0 and (CNV[Bad] == 'normal'
                                                         or CNV[Bad]
                                                         == 'Bad-normal'):
                                Change = 'n'
                                for Oth in CloFreDic:  #find multiple mutations at the external branch
                                    if Oth != Clo and CloFreDic[Oth] > 0:
                                        Soth = Clo2Seq['#' + Oth]
                                        if Soth[Bad] == 'T' and BadPosi2ChnageCloLs[
                                                Bad].count('#' + Oth) == 0:
                                            Change = 'y'
                                if Change == 'y':
                                    ChangePosi.append(Bad)
                                else:
                                    NewBadPosi.append(Bad)
                        print 'change positions', Tu, ChangePosi
                        if ChangePosi != []:  #fix multiple mutaitons
                            #  print 'hhh'
                            CutCloSeq = Align.ModSeq(CSeq0, ChangePosi, 'A',
                                                     self.Len)
                            NewCloLs.append(Clo + 'Cut' + Tu)
                            NewC2F[Clo + 'Cut' + Tu] = CloFreDic[Clo]
                            Clo2Seq['#' + Clo + 'Cut' + Tu] = CutCloSeq
                            ChangeOptions = 'y'

                    if ChangeOptions == 'n':
                        NewC2F[Clo] = 1
                NewT2C2F[Tu] = NewC2F

    #  print Clo2Seq
            hitseq_align, hitclone_frequency = CloFreAna.ListHitCloAndSeq(
                NewT2C2F, Clo2Seq)
            outSeqMaj, outSeqAmb, NewT2C2F = Align.CombSimClo(
                hitseq_align, hitclone_frequency, 0.0)
            #   print outSeqMaj, NewT2C2F
            return outSeqMaj, NewT2C2F
        else:
            return seq_list, clone_frequency
Ejemplo n.º 2
0
        seqs_with_ancestor_newName, tsp_list, CNV_information_test,
        params.freq_cutoff, ReadCount_table)
    clone_frequency_cnv.regress_cnv()
    final_seq1, final_clone_frequency1, final_clone_order1 = OutFile.ReNameCloFreMeg(
        clone_frequency_cnv.hitclone_seq_builder,
        clone_frequency_cnv.Tumor2Clone_frequency, 'number')
    id = 'mega_alignment'
    status = tree_builder.do_mega_mp(final_seq1, id)
    if status == True:
        seqs_with_ancestor, tree, nade_map, mask_seq, Initial_Good_posi_info = tree_builder.alignment_least_back_parallel_muts(
            True
        )  # True will execute code to remove redundant seqs (True is default)
        print 'best alignment'
    else:
        print 'failed to run megaMP'
    AA, mask_seq_comb, clone_freq = Align.CombSimClo(mask_seq,
                                                     final_clone_frequency1, 0)
    print 'test clone hit and remove insignificant clones'
    significant_clone = cluster_test()
    significant_seq, significant_clone_frequency = significant_clone.remove_insignificant_clones(
        v_obs, clone_freq, mask_seq_comb, CNV_information_test,
        Significant_cutoff)
    Align.save_mega_alignment_to_file(params.input_id + '_CloneFinder.meg',
                                      significant_seq)
    CloFreAna.save_frequency_table_to_file(
        params.input_id + '_CloneFinder.txt', significant_clone_frequency, [])

#######################
os.remove(params.input_id + '.txt')
os.remove(params.input_id + '-CNV.txt')
os.remove('Ini.meg')
os.remove('Ini_freq.txt')