Ejemplo n.º 1
0
def test_sound_recognition_v2():
    files = [
        "samples/Sonnette/sonnette", "samples/Fire_Alarm/fire_alarm",
        "samples/Phone_Ring/phone"
    ]

    dico = np.zeros([513, 0])
    print(dico.shape)

    for file in files:
        stft = np.zeros([513, 0])

        for i in range(1, 5):
            rate, signal = wav.read(file + str(i) + ".wav")
            stft = np.concatenate((stft, spectrum.get_stft(signal / 1.0)),
                                  axis=1)

        dico_plus, _ = get_nmf(stft, 3)
        dico = np.concatenate((dico, dico_plus), axis=1)

    for file in files:
        rate2, signal2 = wav.read(file + "5.wav")
        stft2 = spectrum.get_stft(signal2 * 1.0)
        activations = get_activations(stft2, dico, 3)

        plt.clf()

        for i in range(0, 9):
            plt.subplot(3, 3, i + 1)
            plt.title("Ligne " + str(i))
            plt.stem(activations[i, :])

        plt.show()
Ejemplo n.º 2
0
    def process_audio(self, audio):
        """Compute spectrum from audio source, and call process_spectrum with
        the result"""
        self.current_audio = np.concatenate((self.current_audio, audio))
        spectrum = get_stft(self.current_audio)

        if spectrum.size > 0:
            self.process_spectrum(spectrum)

        # current functions parse the whole audio, so we let nothing in current_audio
        # (parsing the whole data regardless of its size, may result in artifacts
        # in the reconstructed spectrum)
        self.current_audio = np.array([])
Ejemplo n.º 3
0
    def add_dictionary_entry(self, tag, entry):
        """Add a sound to be recognized by Big Alison.
        
        entry: a sound sample containing mostly the sound to recognize."""
        stft = get_stft(entry)
        dico, _ = nmf.get_nmf(stft, self.components_per_tag)

        if self.dictionary is None:
            self.dictionary = dico
        else:
            self.dictionary = np.concatenate((self.dictionary, dico), axis=1)

        range_stop = self.dictionary.shape[1]
        range_start = range_stop - dico.shape[1]
        self.tags[tag] = TagInfo(range(range_start, range_stop))
        self._reset_sound_processing()
Ejemplo n.º 4
0
def demo_nmf():
    """
    Show main components from nmf decomposition of an example sound
    """

    # D = get_dictionnary(0).components_
    # print(D.shape)

    rate, signal = wav.read("samples/door-bell01.wav")
    stft = spectrum.get_stft(signal[:, 0] / 1.0)
    components, activation = dcp.decompose(stft)

    i = 0
    # first frame spectrum
    spectrum = stft[:, i]
    # first frame component activation
    line = activation[:, i]

    # Extract spectrum for the 4 strongest activation on the first frame
    ind = np.argsort(line)[-4:]
    maincomps = components[:, ind]

    # Plot
    plt.figure(figsize=(7, 7))

    plt.subplot(6, 1, 1)
    plt.title("Spectrum")
    plt.stem(spectrum)

    plt.subplot(6, 1, 2)
    plt.title("Components")
    plt.stem(line)

    for n in range(4):
        plt.subplot(6, 1, n + 3)
        plt.stem(maincomps[:, n])

    plt.show()
waveFile.close()

files = [
    "../samples/Sonnette/sonnette", "../samples/Fire_Alarm/fire_alarm",
    "../samples/Phone_Ring/phone"
]

dico = np.zeros([513, 0])
print(dico.shape)

for file in files:
    stft = np.zeros([513, 0])

    for i in range(1, 4):
        rate, signal = wav.read(file + str(i) + ".wav")
        stft = np.concatenate((stft, spectrum.get_stft(signal / 1.0)), axis=1)

    dico_plus, _ = get_nmf(stft, 3)
    dico = np.concatenate((dico, dico_plus), axis=1)

for file in files:
    rate2, signal2 = wav.read("audio_Record.wav")
    stft2 = spectrum.get_stft(signal2 * 1.0)
    activations = get_activations(stft2, dico, 3)

    plt.clf()

    for i in range(0, 9):
        plt.subplot(3, 3, i + 1)
        plt.title("Ligne " + str(i))
        plt.stem(activations[i, :])
Ejemplo n.º 6
0
def test_sound_recognition():
    """
    Example on how to use get_nmf and get_activations
    """

    rate, signal = wav.read("samples/Sonnette/sonnette1.wav")
    stft = spectrum.get_stft(signal * 1.0)

    for file in [
            "samples/Sonnette/sonnette", "samples/Fire_Alarm/fire_alarm",
            "samples/Phone_Ring/phone"
    ]:

        for i in range(1, 5):

            rate, signal = wav.read(file + str(i) + ".wav")
            stft = np.concatenate((stft, spectrum.get_stft(signal / 1.0)),
                                  axis=1)

    print(stft.shape)

    # obtain dictionary with NMF
    dico, base_act = get_nmf(stft, 8)

    rate2, signal2 = wav.read("samples/Sonnette/sonnette5.wav")
    stft2 = spectrum.get_stft(signal2 * 1.0)

    # get activations using the previously computed dictionary
    # Here it's used on the same sound, but we can use it on different
    # sounds in order to classify them
    activations = get_activations(stft2, dico, 3)

    i = 100
    j = 100

    frame_act1 = base_act[:, i]
    frame_act2 = activations[:, j]

    plt.figure(figsize=(7, 7))
    plt.subplot(3, 2, 1)
    plt.title("Spectrum for sample a")
    plt.stem(stft[:, i])

    plt.subplot(3, 2, 2)
    plt.title("Spectrum for sample b")
    plt.stem(stft2[:, j])

    plt.subplot(3, 2, 3)
    plt.title("Reconstitution of sample b")
    plt.stem(np.dot(dico, frame_act2))

    plt.subplot(3, 2, 4)
    plt.title("Ligne 1")
    plt.stem(activations[0, :])

    plt.subplot(3, 2, 5)
    plt.title("Ligne 2")
    plt.stem(activations[1, :])

    plt.subplot(3, 2, 6)
    plt.title("Ligne 3")
    plt.stem(activations[2, :])

    plt.show()
    import alison.spectrum as spectrum
    from alison.nmf import *

    from scipy.ndimage.interpolation import shift

    files = [
        "../samples/Sonnette/sonnette", "../samples/Fire_Alarm/fire_alarm",
        "../samples/Phone_Ring/phone"
    ]

    j = 1

    #-------- Fire alarm
    rate, signal = wav.read("../samples/Fire_Alarm/fire_alarm1.wav")
    stft = spectrum.get_stft(signal / 1.0)
    dico, _ = get_nmf(stft, 3)
    activations = get_activations(stft, dico, 3)

    for c in range(0, 3):
        plt.subplot(3, 2, j)
        plt.title("dico" + "c" + str(c + 1))
        plt.stem(dico[:, c])
        j = j + 1
        plt.subplot(3, 2, j)
        plt.title("acti" + "l" + str(c + 1))
        plt.stem(activations[c, :])
        j = j + 1
    plt.suptitle("Fire alarm 1")
    plt.show()
    # -------- Complex sounds