Ejemplo n.º 1
0
def test_noise():

    N = 500
    rate = 1.0
    w = noise.white(N)
    b = noise.brown(N)
    v = noise.violet(N)
    p = noise.pink(N)
    
    assert len(w) == N
    assert len(b) == N
    assert len(v) == N-1 # why?
    assert len(p) == N
Ejemplo n.º 2
0
def test_noise():

    N = 500
    rate = 1.0
    w = noise.white(N)
    b = noise.brown(N)
    v = noise.violet(N)
    p = noise.pink(N)

    assert len(w) == N
    assert len(b) == N
    assert len(v) == N - 1  # why?
    assert len(p) == N
Ejemplo n.º 3
0
def add_brown_noise(filename):
        print "Adding Brown Noise..."
        fps, snd_array = wavfile.read('../audio/transformed/' + filename)
        noise1 = noise.brown(len(snd_array))
        noise1 = map(lambda x: int(x/.01), noise1)

        noise2 = np.array([noise1,noise1]).T
        noisy_array = noise2 + snd_array
        filename, file_extension = os.path.splitext(filename)
        filename = "../audio/transformed/"+filename+"brownnoise.wav"

        scaled = np.int16(noisy_array/np.max(np.abs(noisy_array)) * 32767)
        write(filename, 44100, scaled)
        return
Ejemplo n.º 4
0
def test_noise():

    N = 500
    #rate = 1.0
    w = noise.white(N)
    b = noise.brown(N)
    v = noise.violet(N)
    p = noise.pink(N)
    
    # check output length
    assert len(w) == N
    assert len(b) == N
    assert len(v) == N
    assert len(p) == N
    # check output type
    for x in [w, b, v, p]:
        assert type(x) == numpy.ndarray, "%s is not numpy.ndarray" % (type(x))
Ejemplo n.º 5
0

if __name__ == "__main__":
    print("allatools tests with various noise types")
    # we test ADEV etc. by calculations on synthetic data
    # with known slopes of ADEV

    t = [tt for tt in numpy.logspace(0, 3, 50)]  # tau values from 1 to 1000
    plt.subplot(111, xscale="log", yscale="log")
    N = 100000

    # Colors: http://en.wikipedia.org/wiki/Colors_of_noise

    # Brownian a.k.a random walk  frequency => sqrt(tau) ADEV
    print("Random Walk frequency noise - should have sqrt(tau) ADEV")
    freq_rw = noise.brown(N)
    phase_rw_rw = numpy.cumsum(noise.brown(N))  # integrate to get  phase
    plotallan(plt, freq_rw, 1, t, 'm.')
    plotallan_phase(plt, phase_rw_rw, 1, t, 'mo',label='random walk frequency')
    plotline(plt, +0.5, t, 'm',label="f^(+1/2)")
    
    # pink frequency noise => constant ADEV
    print("Pink frequency noise - should have constant ADEV")
    freq_pink = noise.pink(N)
    phase_p = numpy.cumsum(noise.pink(N))  # integrate to get phase, color??
    plotallan_phase(plt, phase_p, 1, t, 'co',label="pink/flicker frequency noise")
    plotallan(plt, freq_pink, 1, t, 'c.')
    plotline(plt, 0, t, 'c',label="f^0")

    # white frequency modulation => 1/sqrt(tau) ADEV
    print("White frequency noise - should have 1/sqrt(tau) ADEV")
Ejemplo n.º 6
0

if __name__ == "__main__":
    print("allatools tests with various noise types")
    # we test ADEV etc. by calculations on synthetic data
    # with known slopes of ADEV

    t = [tt for tt in numpy.logspace(0, 3, 50)]  # tau values from 1 to 1000
    plt.subplot(111, xscale="log", yscale="log")
    N = 100000

    # Colors: http://en.wikipedia.org/wiki/Colors_of_noise

    # Brownian a.k.a random walk  frequency => sqrt(tau) ADEV
    print("Random Walk frequency noise - should have sqrt(tau) ADEV")
    freq_rw = noise.brown(N)
    phase_rw_rw = numpy.cumsum(noise.brown(N))  # integrate to get  phase
    plotallan(plt, freq_rw, 1, t, 'm.')
    plotallan_phase(plt,
                    phase_rw_rw,
                    1,
                    t,
                    'mo',
                    label='random walk frequency')
    plotline(plt, +0.5, t, 'm', label="f^(+1/2)")

    # pink frequency noise => constant ADEV
    print("Pink frequency noise - should have constant ADEV")
    freq_pink = noise.pink(N)
    phase_p = numpy.cumsum(noise.pink(N))  # integrate to get phase, color??
    plotallan_phase(plt,
Ejemplo n.º 7
0

if __name__ == "__main__":
    print("allatools tests with various noise types")
    # we test ADEV etc. by calculations on synthetic data
    # with known slopes of ADEV

    t = [tt for tt in numpy.logspace(0, 3, 50)]  # tau values from 1 to 1000
    plt.subplot(111, xscale="log", yscale="log")
    N = 100000

    # Colors: http://en.wikipedia.org/wiki/Colors_of_noise

    # Brownian a.k.a random walk  frequency => sqrt(tau) ADEV
    print("Random Walk frequency noise - should have sqrt(tau) ADEV")
    freq_rw = noise.brown(N)
    phase_rw_rw = numpy.cumsum(noise.brown(N))  # integrate to get  phase
    plotallan(plt, freq_rw, 1, t, 'm.')
    plotallan_phase(plt,
                    phase_rw_rw,
                    1,
                    t,
                    'mo',
                    label='random walk frequency')
    plotline(plt, +0.5, t, 'm', label="f^(+1/2)")

    # pink frequency noise => constant ADEV
    print("Pink frequency noise - should have constant ADEV")
    freq_pink = noise.pink(N)
    phase_p = numpy.cumsum(noise.pink(N))  # integrate to get phase, color??
    plotallan_phase(plt,
Ejemplo n.º 8
0
# the predicted S_y, S_fi, S_x, and ADEV given in the table
# AW 2015-08-06

# from the ieee1139 table
# PSD_y(f)    = h2 * f^-2                     fractional frequency PSD
# PSD_fi(f)   = h2 * vo^2 * f^-4              phase (radians) PSD
# PSD_x(f)    = h2 * (2 pi)^-2 * f^-4         phase (time) PSD
# ADEV_y(tau) = sqrt{ 2*pi^2/3 * h2 * tau }   Allan deviation


fs=12.8    # sampling frequency in Hz (code should work for any non-zero value here)
h2=2e-20 # PSD f^-2 coefficient
N=10*4096 # number of samples 
v0 = 1.2345e6 # nominal oscillator frequency

y = noise.brown(N=N,b2=h2,fs=fs) # fractional frequency
x = allantools.frequency2phase(y,fs) # phase in seconds
fi = [2*math.pi*v0*xx for xx in x] # phase in radians
t = np.linspace(0, (1.0/fs)*N, len(y)) # time-series time axis

# time-series figure
plt.figure()
plt.plot(t,y,label='y')
plt.plot(t,x[1:],label='x')
plt.legend()
plt.xlabel('Time / s')
plt.ylabel('Fractional frequency')

# note: calculating the PSD of an 1/f^4 signal using fft seems to be difficult
# the welch method returns a correct 1/f^4 shaped PSD, but fft often does not
# things that may help
Ejemplo n.º 9
0
# the predicted S_y, S_fi, S_x, and ADEV given in the table
# AW 2015-08-06

# from the ieee1139 table
# PSD_y(f)    = h2 * f^-2                     fractional frequency PSD
# PSD_fi(f)   = h2 * vo^2 * f^-4              phase (radians) PSD
# PSD_x(f)    = h2 * (2 pi)^-2 * f^-4         phase (time) PSD
# ADEV_y(tau) = sqrt{ 2*pi^2/3 * h2 * tau }   Allan deviation


fs=12.8    # sampling frequency in Hz (code should work for any non-zero value here)
h2=2e-20 # PSD f^-2 coefficient
N=10*4096 # number of samples 
v0 = 1.2345e6 # nominal oscillator frequency

y = noise.brown(num_points=N, b2=h2, fs=fs) # fractional frequency
x = allantools.frequency2phase(y,fs) # phase in seconds
fi = [2*math.pi*v0*xx for xx in x] # phase in radians
t = np.linspace(0, (1.0/fs)*N, len(y)) # time-series time axis

# time-series figure
plt.figure()
fig, ax1 = plt.subplots()
ax1.plot(t, y, label='y')
ax2 = ax1.twinx()
ax2.plot(t, x[1:], label='x')
plt.legend()
plt.xlabel('Time / s')
plt.ylabel('Fractional frequency')

# note: calculating the PSD of an 1/f^4 signal using fft seems to be difficult