Ejemplo n.º 1
0
def compress_table(tbl, condition, blen=None, storage=None, create='table',
                   **kwargs):
    """Return selected rows of a table."""

    # setup
    storage = _util.get_storage(storage)
    names, columns = _util.check_table_like(tbl)
    blen = _util.get_blen_table(tbl, blen)
    _util.check_equal_length(columns[0], condition)
    length = len(columns[0])
    nnz = count_nonzero(condition)

    # block iteration
    out = None
    for i in range(0, length, blen):
        j = min(i+blen, length)
        bcond = np.asanyarray(condition[i:j])
        # don't access any data unless we have to
        if np.any(bcond):
            bcolumns = [np.asanyarray(c[i:j]) for c in columns]
            res = [np.compress(bcond, c, axis=0) for c in bcolumns]
            if out is None:
                out = getattr(storage, create)(res, names=names,
                                               expectedlen=nnz, **kwargs)
            else:
                out.append(res)
    return out
Ejemplo n.º 2
0
def compress_table(tbl, condition, blen=None, storage=None, create='table',
                   **kwargs):
    """Return selected rows of a table."""

    # setup
    storage = _util.get_storage(storage)
    names, columns = _util.check_table_like(tbl)
    blen = _util.get_blen_table(tbl, blen)
    _util.check_equal_length(columns[0], condition)
    length = len(columns[0])
    nnz = count_nonzero(condition)

    # block iteration
    out = None
    for i in range(0, length, blen):
        j = min(i+blen, length)
        bcond = np.asanyarray(condition[i:j])
        # don't access any data unless we have to
        if np.any(bcond):
            bcolumns = [np.asanyarray(c[i:j]) for c in columns]
            res = [np.compress(bcond, c, axis=0) for c in bcolumns]
            if out is None:
                out = getattr(storage, create)(res, names=names,
                                               expectedlen=nnz, **kwargs)
            else:
                out.append(res)
    return out
Ejemplo n.º 3
0
def compress(condition,
             data,
             axis=0,
             out=None,
             blen=None,
             storage=None,
             create='array',
             **kwargs):
    """Return selected slices of an array along given axis."""

    # setup
    if out is not None:
        # argument is only there for numpy API compatibility
        raise NotImplementedError('out argument is not supported')
    storage = _util.get_storage(storage)
    blen = _util.get_blen_array(data, blen)
    length = len(data)
    nnz = count_nonzero(condition)

    if axis == 0:
        _util.check_equal_length(data, condition)

        # block iteration
        out = None
        for i in range(0, length, blen):
            j = min(i + blen, length)
            bcond = np.asarray(condition[i:j])
            # don't access any data unless we have to
            if np.any(bcond):
                block = np.asarray(data[i:j])
                res = np.compress(bcond, block, axis=0)
                if out is None:
                    out = getattr(storage, create)(res,
                                                   expectedlen=nnz,
                                                   **kwargs)
                else:
                    out.append(res)
        return out

    elif axis == 1:

        # block iteration
        out = None
        condition = np.asanyarray(condition)
        for i in range(0, length, blen):
            j = min(i + blen, length)
            block = np.asarray(data[i:j])
            res = np.compress(condition, block, axis=1)
            if out is None:
                out = getattr(storage, create)(res,
                                               expectedlen=length,
                                               **kwargs)
            else:
                out.append(res)

        return out

    else:
        raise NotImplementedError('axis not supported: %s' % axis)
Ejemplo n.º 4
0
def compress(data, condition, axis=0, blen=None, storage=None,
             create='array', **kwargs):
    """Return selected slices of an array along given axis."""

    # setup
    storage = _util.get_storage(storage)
    blen = _util.get_blen_array(data, blen)
    length = len(data)
    nnz = count_nonzero(condition)

    if axis == 0:
        _util.check_equal_length(data, condition)

        # block iteration
        out = None
        for i in range(0, length, blen):
            j = min(i+blen, length)
            bcond = np.asanyarray(condition[i:j])
            # don't access any data unless we have to
            if np.any(bcond):
                block = np.asanyarray(data[i:j])
                res = np.compress(bcond, block, axis=0)
                if out is None:
                    out = getattr(storage, create)(res, expectedlen=nnz,
                                                   **kwargs)
                else:
                    out.append(res)
        return out

    elif axis == 1:

        # block iteration
        out = None
        condition = np.asanyarray(condition)
        for i in range(0, length, blen):
            j = min(i+blen, length)
            block = np.asanyarray(data[i:j])
            res = np.compress(condition, block, axis=1)
            if out is None:
                out = getattr(storage, create)(res, expectedlen=length,
                                               **kwargs)
            else:
                out.append(res)

        return out

    else:
        raise NotImplementedError('axis not supported: %s' % axis)
Ejemplo n.º 5
0
def compress_table(condition,
                   tbl,
                   axis=None,
                   out=None,
                   blen=None,
                   storage=None,
                   create='table',
                   **kwargs):
    """Return selected rows of a table."""

    # setup
    if axis is not None and axis != 0:
        raise NotImplementedError('only axis 0 is supported')
    if out is not None:
        # argument is only there for numpy API compatibility
        raise NotImplementedError('out argument is not supported')
    storage = _util.get_storage(storage)
    names, columns = _util.check_table_like(tbl)
    blen = _util.get_blen_table(tbl, blen)
    _util.check_equal_length(columns[0], condition)
    length = len(columns[0])
    nnz = count_nonzero(condition)

    # block iteration
    out = None
    for i in range(0, length, blen):
        j = min(i + blen, length)
        bcond = condition[i:j]
        # don't access any data unless we have to
        if np.any(bcond):
            bcolumns = [c[i:j] for c in columns]
            res = [np.compress(bcond, c, axis=0) for c in bcolumns]
            if out is None:
                out = getattr(storage, create)(res,
                                               names=names,
                                               expectedlen=nnz,
                                               **kwargs)
            else:
                out.append(res)
    return out
Ejemplo n.º 6
0
def map_blocks(data, f, blen=None, storage=None, create='array', **kwargs):
    """Apply function `f` block-wise over `data`."""

    # setup
    storage = _util.get_storage(storage)
    if isinstance(data, tuple):
        blen = max(_util.get_blen_array(d, blen) for d in data)
    else:
        blen = _util.get_blen_array(data, blen)
    if isinstance(data, tuple):
        _util.check_equal_length(*data)
        length = len(data[0])
    else:
        length = len(data)

    # block-wise iteration
    out = None
    for i in range(0, length, blen):
        j = min(i + blen, length)

        # obtain blocks
        if isinstance(data, tuple):
            blocks = [d[i:j] for d in data]
        else:
            blocks = [data[i:j]]

        # map
        res = f(*blocks)

        # store
        if out is None:
            out = getattr(storage, create)(res, expectedlen=length, **kwargs)
        else:
            out.append(res)

    return out
Ejemplo n.º 7
0
def apply(data, f, blen=None, storage=None, create='array', **kwargs):
    """Apply function `f` block-wise over `data`."""

    # setup
    storage = _util.get_storage(storage)
    if isinstance(data, tuple):
        blen = max(_util.get_blen_array(d, blen) for d in data)
    else:
        blen = _util.get_blen_array(data, blen)
    if isinstance(data, tuple):
        _util.check_equal_length(*data)
        length = len(data[0])
    else:
        length = len(data)

    # block-wise iteration
    out = None
    for i in range(0, length, blen):
        j = min(i+blen, length)

        # obtain blocks
        if isinstance(data, tuple):
            blocks = [np.asanyarray(d[i:j]) for d in data]
        else:
            blocks = [np.asanyarray(data[i:j])]

        # map
        res = f(*blocks)

        # store
        if out is None:
            out = getattr(storage, create)(res, expectedlen=length, **kwargs)
        else:
            out.append(res)

    return out