Ejemplo n.º 1
0
    def close(self) -> None:
        import wandb

        assert wandb.run is not None
        # set this here for resuming
        os.environ.update({"WANDB_RUN_ID": str(wandb.run.id)})

        if self.save_model_archive:
            # we will have to create archive prematurely here.
            # the `train_model()` in  `allennlp train` will
            # recreate the same model archive later. However,
            # this duplication cannot be avioded at this stage.
            logger.info("Archiving model before closing wandb.")
            archive_model(
                self.serialization_dir,
                include_in_archive=self.include_in_archive,
            )

        if self._files_to_save_at_end:
            for fpath in self._files_to_save_at_end:
                self.wandb.save(  # type: ignore
                    os.path.join(self.serialization_dir, fpath),
                    base_path=self.serialization_dir,
                    policy="end",
                )

        LogWriterCallback.close(self)

        if self.finish_on_end:
            wandb.finish()
Ejemplo n.º 2
0
def save_model():
    # Save the model
    serialization_dir = 'model'
    config_file = os.path.join(serialization_dir, 'config.json')
    vocabulary_dir = os.path.join(serialization_dir, 'vocabulary')
    weights_file = os.path.join(serialization_dir, 'weights.th')

    os.makedirs(serialization_dir, exist_ok=True)
    params.to_file(config_file)
    vocab.save_to_files(vocabulary_dir)
    torch.save(model.state_dict(), weights_file)

    # Load the model
    loaded_params = Params.from_file(config_file)
    loaded_model = Model.load(loaded_params, serialization_dir, weights_file)
    loaded_vocab = loaded_model.vocab  # Vocabulary is loaded in Model.load()

    # Make sure the predictions are the same
    loaded_preds = make_predictions(loaded_model, dataset_reader)
    assert original_preds == loaded_preds
    print('predictions matched')

    # Create an archive file
    archive_model(serialization_dir, weights='weights.th')

    # Unarchive from the file
    archive = load_archive(os.path.join(serialization_dir, 'model.tar.gz'))
Ejemplo n.º 3
0
    def test_extra_files(self):

        serialization_dir = self.TEST_DIR / 'serialization'

        # Train a model
        train_model(self.params, serialization_dir=serialization_dir)

        # Archive model, and also archive the training data
        files_to_archive = {
            "train_data_path":
            str(self.FIXTURES_ROOT / 'data' / 'sequence_tagging.tsv')
        }
        archive_model(serialization_dir=serialization_dir,
                      files_to_archive=files_to_archive)

        archive = load_archive(serialization_dir / 'model.tar.gz')
        params = archive.config

        # The param in the data should have been replaced with a temporary path
        # (which we don't know, but we know what it ends with).
        assert params.get('train_data_path').endswith('/fta/train_data_path')

        # The temporary path should be accessible even after the load_archive
        # function returns.
        assert os.path.exists(params.get('train_data_path'))

        # The validation data path should be the same though.
        assert params.get('validation_data_path') == str(
            self.FIXTURES_ROOT / 'data' / 'sequence_tagging.tsv')
Ejemplo n.º 4
0
    def save(self, directory: Union[str, Path]) -> str:
        """Saves the pipeline in the given directory as `model.tar.gz` file.

        Parameters
        ----------
        directory
            Save the 'model.tar.gz' file to this directory.

        Returns
        -------
        file_path
            Path to the 'model.tar.gz' file.
        """
        if isinstance(directory, str):
            directory = Path(directory)

        directory.mkdir(exist_ok=True)
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = Path(temp_dir)
            self.vocab.save_to_files(str(temp_path / "vocabulary"))
            torch.save(self._model.state_dict(), temp_path / "best.th")
            with (temp_path / "config.json").open("w") as file:
                json.dump(
                    {
                        "model": {
                            "config": self.config.as_dict(),
                            "type": "PipelineModel",
                        }
                    },
                    file,
                    indent=4,
                )
            archive_model(temp_path, archive_path=directory)

        return str(directory / "model.tar.gz")
Ejemplo n.º 5
0
    def test_external_modules(self):
        sys.path.insert(0, self.TEST_DIR)

        original_serialization_dir = 'tests/fixtures/bidaf/serialization'
        serialization_dir = os.path.join(self.TEST_DIR, 'serialization')
        shutil.copytree(original_serialization_dir, serialization_dir)

        # Get original model config
        tf = tarfile.open(
            os.path.join(original_serialization_dir, 'model.tar.gz'))
        tf.extract('config.json', self.TEST_DIR)

        # Write out modified config file
        params = Params.from_file(os.path.join(self.TEST_DIR, 'config.json'))
        params['model']['type'] = 'bidaf-duplicate'

        config_file = os.path.join(serialization_dir, 'model_params.json')
        with open(config_file, 'w') as f:
            f.write(json.dumps(params.as_dict(quiet=True)))

        # And create an archive
        archive_model(serialization_dir)

        # Write out modified model.py
        module_dir = os.path.join(self.TEST_DIR, 'bidaf_duplicate')
        os.makedirs(module_dir)

        from allennlp.models.reading_comprehension import bidaf
        with open(bidaf.__file__) as f:
            code = f.read().replace("""@Model.register("bidaf")""",
                                    """@Model.register('bidaf-duplicate')""")

        with open(os.path.join(module_dir, 'model.py'), 'w') as f:
            f.write(code)

        archive_file = os.path.join(serialization_dir, 'model.tar.gz')

        raw_args = [
            "evaluate", archive_file, "--evaluation-data-file",
            "tests/fixtures/data/squad.json"
        ]

        args = self.parser.parse_args(raw_args)

        # Raise configuration error without extra modules
        with pytest.raises(ConfigurationError):
            metrics = evaluate_from_args(args)

        # Specify the additional module
        raw_args.extend(['--include-package', 'bidaf_duplicate'])
        args = self.parser.parse_args(raw_args)
        metrics = evaluate_from_args(args)

        assert metrics.keys() == {
            'span_acc', 'end_acc', 'start_acc', 'em', 'f1'
        }

        sys.path.remove(self.TEST_DIR)
Ejemplo n.º 6
0
def main(args):
    os.makedirs(
        os.path.dirname(args.output_file) if os.path.dirname(args.output_file) != "" else ".",
        exist_ok=True,
    )
    if args.weights_file is None:
        archive_model(args.model_dir, archive_path=args.output_file)
    else:
        archive_model(args.model_dir, weights=args.weights_file, archive_path=args.output_file)
Ejemplo n.º 7
0
    def test_archive_model_uses_archive_path(self):

        serialization_dir = self.TEST_DIR / 'serialization'
        # Train a model
        train_model(self.params, serialization_dir=serialization_dir)
        # Use a new path.
        archive_model(serialization_dir=serialization_dir,
                      archive_path=serialization_dir / "new_path.tar.gz")
        archive = load_archive(serialization_dir / 'new_path.tar.gz')
        assert archive
Ejemplo n.º 8
0
def train_model(
        train_fp: Path,
        dev_fp: Path,
        model_fp: Path,
        vocab_data_fps: Optional[List[Path]] = None) -> Tuple[Model, Params]:
    '''
    :param train_fp: The Traning dataset file path
    :param dev_fp: The development dataset file path
    :param model_fp: The json file that describes the model
    :param vocab_data_fps: An optional List of additional dataset files that 
                           will be used to create the models vocab
    :returns: A tuple containing the Trained model and an object that 
              describes the model.
    '''
    set_random_env()
    model_params = Params.from_file(model_fp)
    emotion_dataset_reader = DatasetReader.from_params(
        model_params.pop('dataset_reader'))

    # Data
    train_dataset = emotion_dataset_reader.read(cached_path(str(train_fp)))
    dev_dataset = emotion_dataset_reader.read(cached_path(str(dev_fp)))
    vocab_datasets = [train_dataset, dev_dataset]
    if vocab_data_fps:
        for vocab_data_fp in vocab_data_fps:
            vocab_datasets.append(
                emotion_dataset_reader.read(cached_path(str(vocab_data_fp))))
    vocab_data = []
    for vocab_dataset in vocab_datasets:
        vocab_data.extend(vocab_dataset)
    vocab = Vocabulary.from_instances(vocab_data)
    emotion_model = Model.from_params(vocab=vocab,
                                      params=model_params.pop('model'))
    data_iter = DataIterator.from_params(model_params.pop('iterator'))
    data_iter.index_with(vocab)
    # Trainer
    with tempfile.TemporaryDirectory() as serial_dir:
        trainer_params = model_params.pop('trainer')
        trainer = Trainer.from_params(model=emotion_model,
                                      serialization_dir=serial_dir,
                                      iterator=data_iter,
                                      train_data=train_dataset,
                                      validation_data=dev_dataset,
                                      params=trainer_params)
        _ = trainer.train()

        temp_config_fp = str(Path(serial_dir, CONFIG_NAME).resolve())
        Params.from_file(model_fp).to_file(temp_config_fp)
        vocab.save_to_files(Path(serial_dir, "vocabulary").resolve())
        archive_model(serial_dir,
                      files_to_archive=model_params.files_to_archive)
        model_archive = load_archive(serial_dir, cuda_device=0)
        return model_archive.model, model_archive.config
Ejemplo n.º 9
0
    def test_loading_serialization_directory_with_extra_files(self):

        serialization_dir = self.TEST_DIR / 'serialization'

        # Train a model
        train_model(self.params, serialization_dir=serialization_dir)

        # Archive model, and also archive the training data
        original_train_data_path = str(self.FIXTURES_ROOT / 'data' /
                                       'sequence_tagging.tsv')
        files_to_archive = {"train_data_path": original_train_data_path}
        archive_model(serialization_dir=serialization_dir,
                      files_to_archive=files_to_archive)

        archive = load_archive(serialization_dir)
        params = archive.config

        # We're loading from a directory, so retain the original path.
        assert params.get('train_data_path') == original_train_data_path
Ejemplo n.º 10
0
    def _save_checkpoint(self,
                         epoch: int,
                         val_metric_per_epoch: List[float],
                         is_best: Optional[bool] = None) -> None:
        """
        Saves a checkpoint of the model to self._serialization_dir.
        Is a no-op if self._serialization_dir is None.

        Parameters
        ----------
        epoch : int, required.
            The epoch of training.
        is_best: bool, optional (default = None)
            A flag which causes the model weights at the given epoch to
            be copied to a "best.th" file. The value of this flag should
            be based on some validation metric computed by your model.
        """
        if self._serialization_dir is not None:
            model_path = os.path.join(self._serialization_dir,
                                      "model_state_epoch_{}.th".format(epoch))
            model_state = self._model.state_dict()
            torch.save(model_state, model_path)

            training_state = {
                'epoch': epoch,
                'val_metric_per_epoch': val_metric_per_epoch,
                'optimizer': self._optimizer.state_dict()
            }
            torch.save(
                training_state,
                os.path.join(self._serialization_dir,
                             "training_state_epoch_{}.th".format(epoch)))
            if is_best:
                logger.info(
                    "Best validation performance so far. "
                    "Copying weights to '%s/best.th'.",
                    self._serialization_dir)
                shutil.copyfile(
                    model_path, os.path.join(self._serialization_dir,
                                             "best.th"))
                archive_model(self._serialization_dir,
                              files_to_archive=self._files_to_archive)
Ejemplo n.º 11
0
    def test_extra_files(self):

        serialization_dir = self.TEST_DIR / u'serialization'

        # Train a model
        train_model(self.params, serialization_dir=serialization_dir)

        # Archive model, and also archive the training data
        files_to_archive = {u"train_data_path": unicode(self.FIXTURES_ROOT / u'data' / u'sequence_tagging.tsv')}
        archive_model(serialization_dir=serialization_dir, files_to_archive=files_to_archive)

        archive = load_archive(serialization_dir / u'model.tar.gz')
        params = archive.config

        # The param in the data should have been replaced with a temporary path
        # (which we don't know, but we know what it ends with).
        assert params.get(u'train_data_path').endswith(u'/fta/train_data_path')

        # The validation data path should be the same though.
        assert params.get(u'validation_data_path') == unicode(self.FIXTURES_ROOT / u'data' / u'sequence_tagging.tsv')
Ejemplo n.º 12
0
    def test_extra_files(self):

        serialization_dir = self.TEST_DIR / 'serialization'

        # Train a model
        train_model(self.params, serialization_dir=serialization_dir)

        # Archive model, and also archive the training data
        files_to_archive = {"train_data_path": str(self.FIXTURES_ROOT / 'data' / 'sequence_tagging.tsv')}
        archive_model(serialization_dir=serialization_dir, files_to_archive=files_to_archive)

        archive = load_archive(serialization_dir / 'model.tar.gz')
        params = archive.config

        # The param in the data should have been replaced with a temporary path
        # (which we don't know, but we know what it ends with).
        assert params.get('train_data_path').endswith('/fta/train_data_path')

        # The validation data path should be the same though.
        assert params.get('validation_data_path') == str(self.FIXTURES_ROOT / 'data' / 'sequence_tagging.tsv')
    def test_extra_files(self):

        serialization_dir = os.path.join(self.TEST_DIR, 'serialization')

        # Train a model
        train_model(self.params, serialization_dir=serialization_dir)

        # Archive model, and also archive the training data
        files_to_archive = {
            "train_data_path": 'tests/fixtures/data/sequence_tagging.tsv'
        }
        archive_model(serialization_dir=serialization_dir,
                      files_to_archive=files_to_archive)

        archive = load_archive(os.path.join(serialization_dir, 'model.tar.gz'))
        params = archive.config

        # The param in the data should have been replaced with a temporary path
        # (which we don't know, but we know what it ends with).
        assert params.get('train_data_path').endswith('/fta/train_data_path')

        # The validation data path should be the same though.
        assert params.get('validation_data_path'
                          ) == 'tests/fixtures/data/sequence_tagging.tsv'
Ejemplo n.º 14
0
def train_model(params: Params,
                serialization_dir: str,
                file_friendly_logging: bool = False,
                recover: bool = False,
                force: bool = False,
                cache_directory: str = None,
                cache_prefix: str = None) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    force : ``bool``, optional (default=False)
        If ``True``, we will overwrite the serialization directory if it already exists.
    cache_directory : ``str``, optional
        For caching data pre-processing.  See :func:`allennlp.training.util.datasets_from_params`.
    cache_prefix : ``str``, optional
        For caching data pre-processing.  See :func:`allennlp.training.util.datasets_from_params`.

    Returns
    -------
    best_model: ``Model``
        The model with the best epoch weights.
    """
    create_serialization_dir(params, serialization_dir, recover, force)
    stdout_handler = prepare_global_logging(serialization_dir,
                                            file_friendly_logging)
    prepare_environment(params)

    cuda_device = params.params.get('trainer').get('cuda_device', -1)
    check_for_gpu(cuda_device)

    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)

    trainer_type = params.get("trainer", {}).get("type", "default")

    if trainer_type == "default":
        # Special logic to instantiate backward-compatible trainer.
        pieces = TrainerPieces.from_params(
            params,  # pylint: disable=no-member
            serialization_dir,
            recover,
            cache_directory,
            cache_prefix)
        trainer = Trainer.from_params(
            model=pieces.model,
            serialization_dir=serialization_dir,
            iterator=pieces.iterator,
            train_data=pieces.train_dataset,
            validation_data=pieces.validation_dataset,
            params=pieces.params,
            validation_iterator=pieces.validation_iterator)

        evaluation_iterator = pieces.validation_iterator or pieces.iterator
        evaluation_dataset = pieces.test_dataset

    else:
        if evaluate_on_test:
            raise ValueError(
                "--evaluate-on-test only works with the default Trainer. "
                "If you're using the CallbackTrainer you can use a callback "
                "to evaluate at Events.TRAINING_END; otherwise you'll have "
                "to run allennlp evaluate separately.")

        trainer = TrainerBase.from_params(params, serialization_dir, recover,
                                          cache_directory, cache_prefix)
        evaluation_dataset = None

    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    # Evaluate
    if evaluation_dataset and evaluate_on_test:
        logger.info(
            "The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
            trainer.model,
            evaluation_dataset,
            evaluation_iterator,
            cuda_device=trainer._cuda_devices[0],  # pylint: disable=protected-access,
            # TODO(brendanr): Pass in an arg following Joel's trainer refactor.
            batch_weight_key="")

        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif evaluation_dataset:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    cleanup_global_logging(stdout_handler)

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)
    dump_metrics(os.path.join(serialization_dir, "metrics.json"),
                 metrics,
                 log=True)

    # We count on the trainer to have the model with best weights
    return trainer.model
Ejemplo n.º 15
0
def train_model(params: Params,
                serialization_dir: str,
                cuda_device: int,
                train_data_path: str,
                validation_data_path: str,
                test_data_path: str,
                file_friendly_logging: bool = False) -> Model:
    """
    This function can be used as an entry point to running models in AllenNLP
    directly from a JSON specification using a :class:`Driver`. Note that if
    you care about reproducibility, you should avoid running code using Pytorch
    or numpy which affect the reproducibility of your experiment before you
    import and use this function, these libraries rely on random seeds which
    can be set in this function via a JSON specification file. Note that this
    function performs training and will also evaluate the trained model on
    development and test sets if provided in the parameter json.

    Parameters
    ----------
    params: Params, required.
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir: str, required
        The directory in which to save results and logs.
    """
    prepare_environment(params)

    os.makedirs(serialization_dir, exist_ok=True)
    sys.stdout = TeeLogger(
        os.path.join(serialization_dir, "stdout.log"),  # type: ignore
        sys.stdout,
        file_friendly_logging)
    sys.stderr = TeeLogger(
        os.path.join(serialization_dir, "stderr.log"),  # type: ignore
        sys.stderr,
        file_friendly_logging)
    handler = logging.FileHandler(
        os.path.join(serialization_dir, "python_logging.log"))
    handler.setLevel(logging.INFO)
    handler.setFormatter(
        logging.Formatter(
            '%(asctime)s - %(levelname)s - %(name)s - %(message)s'))
    logging.getLogger().addHandler(handler)
    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, "model_params.json"),
              "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    # all_datasets = datasets_from_params(params)
    all_datasets = datasets_from_args(params, train_data_path,
                                      validation_data_path, test_data_path)
    datasets_for_vocab_creation = set(
        params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(
                f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("Creating a vocabulary using %s data.",
                ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
        params.pop("vocabulary", {}),
        (instance for key, dataset in all_datasets.items()
         for instance in dataset if key in datasets_for_vocab_creation))
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    model = Model.from_params(vocab, params.pop('model'))
    if cuda_device >= 0:
        model = model.cuda(cuda_device)
    # iterator = DataIterator.from_params(params.pop("iterator"))
    # iterator.index_with(vocab)
    train_iterator = DataIterator.from_params(params.pop("train_iterator"))
    val_iterator = DataIterator.from_params(params.pop("val_iterator"))
    train_iterator.index_with(vocab)
    val_iterator.index_with(vocab)

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    trainer = Trainer.from_params(model, serialization_dir, train_iterator,
                                  val_iterator, cuda_device, train_data,
                                  validation_data, trainer_params)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    # params.assert_empty('base train command')
    metrics = trainer.train()

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    if test_data and evaluate_on_test:
        test_metrics = evaluate(model,
                                test_data,
                                val_iterator,
                                cuda_device=trainer._cuda_devices[0])  # pylint: disable=protected-access
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"),
              "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return model
Ejemplo n.º 16
0
def train_model(params: Params,
                serialization_dir: str,
                file_friendly_logging: bool = False,
                recover: bool = False) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool`, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    """
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover)

    # TODO(mattg): pull this block out into a separate function (maybe just add this to
    # `prepare_environment`?)
    Tqdm.set_slower_interval(file_friendly_logging)
    sys.stdout = TeeLogger(
        os.path.join(serialization_dir, "stdout.log"),  # type: ignore
        sys.stdout,
        file_friendly_logging)
    sys.stderr = TeeLogger(
        os.path.join(serialization_dir, "stderr.log"),  # type: ignore
        sys.stderr,
        file_friendly_logging)
    handler = logging.FileHandler(
        os.path.join(serialization_dir, "python_logging.log"))
    handler.setLevel(logging.INFO)
    handler.setFormatter(
        logging.Formatter(
            '%(asctime)s - %(levelname)s - %(name)s - %(message)s'))
    logging.getLogger().addHandler(handler)

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(
        params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(
                f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("Creating a vocabulary using %s data.",
                ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
        params.pop("vocabulary", {}),
        (instance for key, dataset in all_datasets.items()
         for instance in dataset if key in datasets_for_vocab_creation))
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    model = Model.from_params(vocab, params.pop('model'))
    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    trainer = Trainer.from_params(model, serialization_dir, iterator,
                                  train_data, validation_data, trainer_params)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')
    metrics = trainer.train()

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    if test_data and evaluate_on_test:
        test_metrics = evaluate(model,
                                test_data,
                                iterator,
                                cuda_device=trainer._cuda_devices[0])  # pylint: disable=protected-access
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"),
              "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return model
def train_model(params: Params,
                serialization_dir: str,
                results_fn: str,
                file_friendly_logging: bool = False,
                recover: bool = False,
                force: bool = False) -> Tuple[Model, Dict[str, Any]]:
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover, force)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    cuda_device = params.params.get('trainer').get('cuda_device', -1)
    if isinstance(cuda_device, list):
        for device in cuda_device:
            check_for_gpu(device)
    else:
        check_for_gpu(cuda_device)

    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(
        params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(
                f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info(
        "From dataset instances, %s will be considered for vocabulary creation.",
        ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
        params.pop("vocabulary", {}),
        (instance for key, dataset in all_datasets.items()
         for instance in dataset if key in datasets_for_vocab_creation))

    model = Model.from_params(vocab=vocab, params=params.pop('model'))

    # Initializing the model can have side effect of expanding the vocabulary
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)
    validation_iterator_params = params.pop("validation_iterator", None)
    if validation_iterator_params:
        validation_iterator = DataIterator.from_params(
            validation_iterator_params)
        validation_iterator.index_with(vocab)
    else:
        validation_iterator = None
    held_out_iterator_params = params.pop("held_out_iterator", None)
    if held_out_iterator_params:
        held_out_iterator = DataIterator.from_params(held_out_iterator_params)
        held_out_iterator.index_with(vocab)
    else:
        held_out_iterator = None

    train_data = all_datasets['train']
    held_out_train_data = all_datasets.get('held_out_train')
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer_choice = trainer_params.pop_choice("type",
                                               Trainer.list_available(),
                                               default_to_first_choice=True)
    trainer = Trainer.by_name(trainer_choice).from_params(
        model=model,
        serialization_dir=serialization_dir,
        iterator=iterator,
        train_data=train_data,
        held_out_train_data=held_out_train_data,
        validation_data=validation_data,
        params=trainer_params,
        validation_iterator=validation_iterator,
        held_out_iterator=held_out_iterator)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    logger.info("Loading the best epoch weights.")
    best_model_state_path = os.path.join(serialization_dir, 'best.th')
    best_model_state = torch.load(best_model_state_path)
    best_model = model
    best_model.load_state_dict(best_model_state)

    if test_data and evaluate_on_test:
        logger.info(
            "The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
            best_model,
            test_data,
            validation_iterator or iterator,
            cuda_device=trainer._cuda_devices[0]  # pylint: disable=protected-access
        )
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    dump_metrics(os.path.join(results_dir, results_fn), metrics, log=True)

    return best_model, metrics
Ejemplo n.º 18
0
def _train_worker(
    process_rank: int,
    params: Params,
    serialization_dir: str,
    file_friendly_logging: bool = False,
    recover: bool = False,
    cache_directory: str = None,
    cache_prefix: str = None,
    include_package: List[str] = None,
    node_rank: int = 0,
    master_addr: str = "127.0.0.1",
    master_port: int = 29500,
    world_size: int = 1,
    distributed_device_ids: List[str] = None,
) -> Optional[Model]:
    """
    Helper to train the configured model/experiment. In distributed mode, this is spawned as a
    worker process. In a single GPU experiment, this returns the ``Model`` object and in distributed
    training, nothing is returned.

    # Parameters

    process_rank : ``int``
        The process index that is initialized using the GPU device id.
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    cache_directory : ``str``, optional
        For caching data pre-processing.  See :func:`allennlp.training.util.datasets_from_params`.
    cache_prefix : ``str``, optional
        For caching data pre-processing.  See :func:`allennlp.training.util.datasets_from_params`.
    include_package : ``List[str]``, optional
        In distributed mode, since this function would have been spawned as a separate process,
        the extra imports need to be done again. NOTE: This does not have any effect in single
        GPU training.
    node_rank : ``int``, optional
        Rank of the node
    world_size : ``int``, optional
        The number of processes involved in distributed training.

    # Returns

    best_model : ``Model``
        The model with the best epoch weights.
    """
    prepare_global_logging(serialization_dir,
                           file_friendly_logging,
                           rank=process_rank,
                           world_size=world_size)
    prepare_environment(params)

    distributed = world_size > 1

    # not using `allennlp.common.util.is_master` as the process group is yet to be initialized
    master = process_rank == 0

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)

    if distributed:
        # Since the worker is spawned and not forked, the extra imports
        # need to be done again.
        if include_package is not None:
            for package_name in include_package:
                import_submodules(package_name)

        num_procs_per_node = len(distributed_device_ids)
        # The Unique identifier of the worker process among all the processes in the
        # distributed training group is computed here. This is used while initializing
        # the process group using `init_process_group`
        global_rank = node_rank * num_procs_per_node + process_rank

        # In distributed training, the configured device is always going to be a list.
        # The corresponding gpu id for the particular worker is obtained by picking the id
        # from the device list with the rank as index
        gpu_id = distributed_device_ids[process_rank]  # type: ignore

        # Till now, "cuda_device" might not be set in the trainer params.
        # But a worker trainer needs to only know about its specific GPU id.
        params["trainer"]["cuda_device"] = gpu_id
        params["trainer"]["world_size"] = world_size
        params["trainer"]["distributed"] = True

        torch.cuda.set_device(gpu_id)
        dist.init_process_group(
            backend="nccl",
            init_method=f"tcp://{master_addr}:{master_port}",
            world_size=world_size,
            rank=global_rank,
        )
        logging.info(f"Process group of world size {world_size} initialized "
                     f"for distributed training in worker {global_rank}")

    trainer_type = params.get("trainer", {}).get("type", "default")

    if trainer_type == "default":
        # Special logic to instantiate backward-compatible trainer.
        pieces = TrainerPieces.from_params(params, serialization_dir, recover,
                                           cache_directory, cache_prefix)
        trainer = Trainer.from_params(
            model=pieces.model,
            serialization_dir=serialization_dir,
            iterator=pieces.iterator,
            train_data=pieces.train_dataset,
            validation_data=pieces.validation_dataset,
            params=pieces.params,
            validation_iterator=pieces.validation_iterator,
        )

        evaluation_iterator = pieces.validation_iterator or pieces.iterator
        evaluation_dataset = pieces.test_dataset

    else:
        if evaluate_on_test:
            raise ValueError(
                "--evaluate-on-test only works with the default Trainer. "
                "If you're using the CallbackTrainer you can use a callback "
                "to evaluate at Events.TRAINING_END; otherwise you'll have "
                "to run allennlp evaluate separately.")

        trainer = TrainerBase.from_params(params, serialization_dir, recover,
                                          cache_directory, cache_prefix)
        evaluation_dataset = None

    params.assert_empty("base train command")

    try:
        if distributed:  # let the setup get ready for all the workers
            dist.barrier()

        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if master and os.path.exists(
                os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    if master:
        if evaluation_dataset and evaluate_on_test:
            logger.info(
                "The model will be evaluated using the best epoch weights.")
            test_metrics = evaluate(
                trainer.model,
                evaluation_dataset,
                evaluation_iterator,
                cuda_device=trainer.cuda_device,
                # TODO(brendanr): Pass in an arg following Joel's trainer refactor.
                batch_weight_key="",
            )

            for key, value in test_metrics.items():
                metrics["test_" + key] = value
        elif evaluation_dataset:
            logger.info(
                "To evaluate on the test set after training, pass the "
                "'evaluate_on_test' flag, or use the 'allennlp evaluate' command."
            )
        dump_metrics(os.path.join(serialization_dir, "metrics.json"),
                     metrics,
                     log=True)

    if not distributed:
        return trainer.model

    return None  # to make mypy happy
Ejemplo n.º 19
0
def train_model(
    params: Params,
    serialization_dir: Union[str, PathLike],
    recover: bool = False,
    force: bool = False,
    node_rank: int = 0,
    include_package: List[str] = None,
    dry_run: bool = False,
    file_friendly_logging: bool = False,
) -> Optional[Model]:
    """
    Trains the model specified in the given [`Params`](../common/params.md#params) object, using the data
    and training parameters also specified in that object, and saves the results in `serialization_dir`.

    # Parameters

    params : `Params`
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : `str`
        The directory in which to save results and logs.
    recover : `bool`, optional (default=`False`)
        If `True`, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see `Model.from_archive`.
    force : `bool`, optional (default=`False`)
        If `True`, we will overwrite the serialization directory if it already exists.
    node_rank : `int`, optional
        Rank of the current node in distributed training
    include_package : `List[str]`, optional
        In distributed mode, extra packages mentioned will be imported in trainer workers.
    dry_run : `bool`, optional (default=`False`)
        Do not train a model, but create a vocabulary, show dataset statistics and other training
        information.
    file_friendly_logging : `bool`, optional (default=`False`)
        If `True`, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.

    # Returns

    best_model : `Optional[Model]`
        The model with the best epoch weights or `None` if in dry run.
    """
    common_logging.FILE_FRIENDLY_LOGGING = file_friendly_logging

    training_util.create_serialization_dir(params, serialization_dir, recover,
                                           force)
    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    distributed_params = params.params.pop("distributed", None)
    # If distributed isn't in the config and the config contains strictly
    # one cuda device, we just run a single training process.
    if distributed_params is None:
        model = _train_worker(
            process_rank=0,
            params=params,
            serialization_dir=serialization_dir,
            include_package=include_package,
            dry_run=dry_run,
            file_friendly_logging=file_friendly_logging,
        )

        if not dry_run:
            archive_model(serialization_dir)
        return model

    # Otherwise, we are running multiple processes for training.
    else:
        # We are careful here so that we can raise a good error if someone
        # passed the wrong thing - cuda_devices are required.
        device_ids = distributed_params.pop("cuda_devices", None)
        multi_device = isinstance(device_ids, list) and len(device_ids) > 1
        num_nodes = distributed_params.pop("num_nodes", 1)

        if not (multi_device or num_nodes > 1):
            raise ConfigurationError(
                "Multiple cuda devices/nodes need to be configured to run distributed training."
            )
        check_for_gpu(device_ids)

        master_addr = distributed_params.pop("master_address", "127.0.0.1")
        master_port = distributed_params.pop("master_port", 29500)
        num_procs = len(device_ids)
        world_size = num_nodes * num_procs

        # Creating `Vocabulary` objects from workers could be problematic since
        # the data loaders in each worker will yield only `rank` specific
        # instances. Hence it is safe to construct the vocabulary and write it
        # to disk before initializing the distributed context. The workers will
        # load the vocabulary from the path specified.
        vocab_dir = os.path.join(serialization_dir, "vocabulary")
        if recover:
            vocab = Vocabulary.from_files(vocab_dir)
        else:
            vocab = training_util.make_vocab_from_params(
                params.duplicate(),
                serialization_dir,
                print_statistics=dry_run)
        params["vocabulary"] = {
            "type": "from_files",
            "directory": vocab_dir,
            "padding_token": vocab._padding_token,
            "oov_token": vocab._oov_token,
        }

        logging.info(
            "Switching to distributed training mode since multiple GPUs are configured | "
            f"Master is at: {master_addr}:{master_port} | Rank of this node: {node_rank} | "
            f"Number of workers in this node: {num_procs} | Number of nodes: {num_nodes} | "
            f"World size: {world_size}")

        mp.spawn(
            _train_worker,
            args=(
                params.duplicate(),
                serialization_dir,
                include_package,
                dry_run,
                node_rank,
                master_addr,
                master_port,
                world_size,
                device_ids,
                file_friendly_logging,
            ),
            nprocs=num_procs,
        )
        if dry_run:
            return None
        else:
            archive_model(serialization_dir)
            model = Model.load(params, serialization_dir)
            return model
Ejemplo n.º 20
0
Archivo: main.py Proyecto: ipipan/combo
def run(_):
    """Run model."""
    # Imports are required to make Registrable modules visible without passing parameter
    util.import_module_and_submodules("combo.commands")
    util.import_module_and_submodules("combo.models")
    util.import_module_and_submodules("combo.training")

    if FLAGS.mode == "train":
        checks.file_exists(FLAGS.config_path)
        params = common.Params.from_file(FLAGS.config_path,
                                         ext_vars=_get_ext_vars())
        model_params = params.get("model").as_ordered_dict()
        serialization_dir = tempfile.mkdtemp(prefix="allennlp",
                                             dir=FLAGS.serialization_dir)
        model = train.train_model(params,
                                  serialization_dir=serialization_dir,
                                  file_friendly_logging=True)
        logger.info(f"Training model stored in: {serialization_dir}")

        if FLAGS.finetuning_training_data_path:
            for f in FLAGS.finetuning_training_data_path:
                checks.file_exists(f)

            # Loading will be performed from stored model.tar.gz
            del model
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            params = common.Params.from_file(
                FLAGS.config_path, ext_vars=_get_ext_vars(finetuning=True))
            # Replace model definition with pretrained archive
            params["model"] = {
                "type": "from_archive",
                "archive_file": serialization_dir + "/model.tar.gz",
            }
            serialization_dir = tempfile.mkdtemp(prefix="allennlp",
                                                 suffix="-finetuning",
                                                 dir=FLAGS.serialization_dir)
            model = train.train_model(params.duplicate(),
                                      serialization_dir=serialization_dir,
                                      file_friendly_logging=True)

            # Make finetuning model serialization independent from training serialization
            # Storing model definition instead of archive
            params["model"] = model_params
            params.to_file(
                os.path.join(serialization_dir, archival.CONFIG_NAME))
            archival.archive_model(serialization_dir)

            logger.info(f"Finetuned model stored in: {serialization_dir}")

        if FLAGS.test_path and FLAGS.output_file:
            checks.file_exists(FLAGS.test_path)
            params = common.Params.from_file(
                FLAGS.config_path, ext_vars=_get_ext_vars())["dataset_reader"]
            params.pop("type")
            dataset_reader = dataset.UniversalDependenciesDatasetReader.from_params(
                params)
            predictor = predict.SemanticMultitaskPredictor(
                model=model, dataset_reader=dataset_reader)
            test_trees = dataset_reader.read(FLAGS.test_path)
            with open(FLAGS.output_file, "w") as file:
                for tree in test_trees:
                    file.writelines(
                        api.sentence2conllu(
                            predictor.predict_instance(tree),
                            keep_semrel=dataset_reader.use_sem).serialize())
    else:
        use_dataset_reader = FLAGS.conllu_format
        predictor = _get_predictor()
        if FLAGS.input_file == "-":
            use_dataset_reader = False
            predictor.without_sentence_embedding = True
        if use_dataset_reader:
            predictor.line_to_conllu = True
        if FLAGS.silent:
            logging.getLogger("allennlp.common.params").disabled = True
        manager = allen_predict._PredictManager(
            predictor,
            FLAGS.input_file,
            FLAGS.output_file,
            FLAGS.batch_size,
            not FLAGS.silent,
            use_dataset_reader,
        )
        manager.run()
Ejemplo n.º 21
0
def train_model(
    params: Params,
    serialization_dir: str,
    file_friendly_logging: bool = False,
    recover: bool = False,
    force: bool = False,
    node_rank: int = 0,
    include_package: List[str] = None,
    batch_weight_key: str = "",
) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    # Parameters

    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see ``Model.from_archive``.
    force : ``bool``, optional (default=False)
        If ``True``, we will overwrite the serialization directory if it already exists.
    node_rank : ``int``, optional
        Rank of the current node in distributed training
    include_package : ``List[str]``, optional
        In distributed mode, extra packages mentioned will be imported in trainer workers.
    batch_weight_key : ``str``, optional (default="")
        If non-empty, name of metric used to weight the loss on a per-batch basis.

    # Returns

    best_model : ``Model``
        The model with the best epoch weights.
    """
    training_util.create_serialization_dir(params, serialization_dir, recover,
                                           force)
    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    distributed_params = params.params.pop("distributed", None)
    # If distributed isn't in the config and the config contains strictly
    # one cuda device, we just run a single training process.
    if distributed_params is None:
        model = _train_worker(
            process_rank=0,
            params=params,
            serialization_dir=serialization_dir,
            file_friendly_logging=file_friendly_logging,
            include_package=include_package,
            batch_weight_key=batch_weight_key,
        )
        archive_model(serialization_dir)
        return model

    # Otherwise, we are running multiple processes for training.
    else:
        # We are careful here so that we can raise a good error if someone
        # passed the wrong thing - cuda_devices are required.
        device_ids = distributed_params.pop("cuda_devices", None)
        multi_device = isinstance(device_ids, list) and len(device_ids) > 1
        num_nodes = distributed_params.pop("num_nodes", 1)

        if not (multi_device or num_nodes > 1):
            raise ConfigurationError(
                "Multiple cuda devices/nodes need to be configured to run distributed training."
            )
        check_for_gpu(device_ids)

        master_addr = distributed_params.pop("master_address", "127.0.0.1")
        master_port = distributed_params.pop("master_port", 29500)
        num_procs = len(device_ids)
        world_size = num_nodes * num_procs

        logging.info(
            f"Switching to distributed training mode since multiple GPUs are configured"
            f"Master is at: {master_addr}:{master_port} | Rank of this node: {node_rank} | "
            f"Number of workers in this node: {num_procs} | Number of nodes: {num_nodes} | "
            f"World size: {world_size}")

        # Creating `Vocabulary` objects from workers could be problematic since
        # the data iterators in each worker will yield only `rank` specific
        # instances. Hence it is safe to construct the vocabulary and write it
        # to disk before initializing the distributed context. The workers will
        # load the vocabulary from the path specified.
        if params.get("vocabulary", Params({})).get("type",
                                                    "") != "from_files":
            vocab = training_util.make_vocab_from_params(
                params.duplicate(), serialization_dir)
            params["vocabulary"] = {
                "type": "from_files",
                "directory": os.path.join(serialization_dir, "vocabulary"),
                "padding_token": vocab._padding_token,
                "oov_token": vocab._oov_token,
            }

        mp.spawn(
            _train_worker,
            args=(
                params.duplicate(),
                serialization_dir,
                file_friendly_logging,
                include_package,
                batch_weight_key,
                node_rank,
                master_addr,
                master_port,
                world_size,
                device_ids,
            ),
            nprocs=num_procs,
        )
        archive_model(serialization_dir)
        model = Model.load(params, serialization_dir)
        return model
Ejemplo n.º 22
0
            params.to_file(serialize_config_file)
    dist.barrier()
    params = ConstParams.from_file(serialize_config_file)

    log_dir = os.path.join(serialization_dir, str(dist.get_rank()))
    os.makedirs(log_dir, exist_ok=True)
    stdout_handler = prepare_global_logging(log_dir,
                                            file_friendly_logging=False)
    prepare_environment(params)

    cuda_device = params.trainer.get('cuda_device', -1)
    check_for_gpu(cuda_device)

    trainer_type = params.trainer.type

    trainer = TrainerBase.from_params(params, serialization_dir, recover)
    params_cnt, params_trainable_cnt = count_parameters(trainer.model)
    print("all params cnt: ", params_cnt)
    print("all trainable params cnt: ", params_trainable_cnt)

    metrics = trainer.train()

    cleanup_global_logging(stdout_handler)

    if is_master_rank:
        archive_model(serialization_dir,
                      files_to_archive=params.files_to_archive)
        dump_metrics(os.path.join(serialization_dir, "metrics.json"),
                     metrics,
                     log=True)
Ejemplo n.º 23
0
def train_model(params: Params,
                serialization_dir: str,
                file_friendly_logging: bool = False,
                recover: bool = False,
                force: bool = False) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.

    Returns
    -------
    best_model: ``Model``
        The model with the best epoch weights.
    """
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover, force)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    cuda_device = params.params.get('trainer').get('cuda_device', -1)
    if isinstance(cuda_device, list):
        for device in cuda_device:
            check_for_gpu(device)
    else:
        check_for_gpu(cuda_device)

    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("From dataset instances, %s will be considered for vocabulary creation.",
                ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
            params.pop("vocabulary", {}),
            (instance for key, dataset in all_datasets.items()
             for instance in dataset
             if key in datasets_for_vocab_creation)
    )

    model = Model.from_params(vocab=vocab, params=params.pop('model'))

    # Initializing the model can have side effect of expanding the vocabulary
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)
    validation_iterator_params = params.pop("validation_iterator", None)
    if validation_iterator_params:
        validation_iterator = DataIterator.from_params(validation_iterator_params)
        validation_iterator.index_with(vocab)
    else:
        validation_iterator = None

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer_choice = trainer_params.pop_choice("type",
                                               Trainer.list_available(),
                                               default_to_first_choice=True)
    trainer = Trainer.by_name(trainer_choice).from_params(model=model,
                                                          serialization_dir=serialization_dir,
                                                          iterator=iterator,
                                                          train_data=train_data,
                                                          validation_data=validation_data,
                                                          params=trainer_params,
                                                          validation_iterator=validation_iterator)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info("Training interrupted by the user. Attempting to create "
                         "a model archive using the current best epoch weights.")
            archive_model(serialization_dir, files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    logger.info("Loading the best epoch weights.")
    best_model_state_path = os.path.join(serialization_dir, 'best.th')
    best_model_state = torch.load(best_model_state_path)
    best_model = model
    best_model.load_state_dict(best_model_state)

    if test_data and evaluate_on_test:
        logger.info("The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
                best_model, test_data, validation_iterator or iterator,
                cuda_device=trainer._cuda_devices[0] # pylint: disable=protected-access
        )
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info("To evaluate on the test set after training, pass the "
                    "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    dump_metrics(os.path.join(serialization_dir, "metrics.json"), metrics, log=True)

    return best_model
Ejemplo n.º 24
0
def train_model(params,
                serialization_dir,
                file_friendly_logging=False,
                recover=False,
                model="bidaf"):
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool`, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    """
    print("Starting training models...")
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    all_datasets = datasets_from_params(params)
    print("get all of the dataset.")
    datasets_for_vocab_creation = set(
        params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(
                f"invalid 'dataset_for_vocab_creation' {dataset}")

    print("creatig vocaburary...")
    logger.info("Creating a vocabulary using %s data.",
                ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
        params.pop("vocabulary", {}),
        (instance for key, dataset in all_datasets.items()
         for instance in dataset if key in datasets_for_vocab_creation))
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    if model == "self":
        model = BiDAFSelfAttention.from_params(vocab, params.pop("model"))
    else:
        model = BidirectionalAttentionFlow.from_params(vocab,
                                                       params.pop("model"))
    print("Initialized a BiDAF model.")
    # This is for debugging.
    print(model)
    print(serialization_dir)

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)
    print("create iterator")

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    print("initalizing a trainer")
    trainer_params = params.pop("trainer")
    trainer = Trainer.from_params(model, serialization_dir, iterator,
                                  train_data, validation_data, trainer_params)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    if test_data and evaluate_on_test:
        test_metrics = evaluate(model,
                                test_data,
                                iterator,
                                cuda_device=trainer._cuda_devices[0])  # pylint: disable=protected-access
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"),
              "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return model
Ejemplo n.º 25
0
def train_model(params: Params,
                serialization_dir: str,
                file_friendly_logging: bool = False,
                recover: bool = False) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool`, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    """
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("Creating a vocabulary using %s data.", ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(params.pop("vocabulary", {}),
                                   (instance for key, dataset in all_datasets.items()
                                    for instance in dataset
                                    if key in datasets_for_vocab_creation))
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    model = Model.from_params(vocab, params.pop('model'))
    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    trainer = Trainer.from_params(model,
                                  serialization_dir,
                                  iterator,
                                  train_data,
                                  validation_data,
                                  trainer_params)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info("Training interrupted by the user. Attempting to create "
                         "a model archive using the current best epoch weights.")
            archive_model(serialization_dir, files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    if test_data and evaluate_on_test:
        test_metrics = evaluate(model, test_data, iterator, cuda_device=trainer._cuda_devices[0])  # pylint: disable=protected-access
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info("To evaluate on the test set after training, pass the "
                    "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"), "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return model
Ejemplo n.º 26
0
def _train_worker(
    process_rank: int,
    params: Params,
    serialization_dir: Union[str, PathLike],
    include_package: List[str] = None,
    dry_run: bool = False,
    node_rank: int = 0,
    primary_addr: str = "127.0.0.1",
    primary_port: int = 29500,
    world_size: int = 1,
    distributed_device_ids: List[int] = None,
    file_friendly_logging: bool = False,
    include_in_archive: List[str] = None,
    distributed_params: Optional[Params] = None,
) -> Optional[Model]:
    """
    Helper to train the configured model/experiment. In distributed mode, this is spawned as a
    worker process. In a single GPU experiment, this returns the `Model` object and in distributed
    training, nothing is returned.

    # Parameters

    process_rank : `int`
        The process index that is initialized using the GPU device id.
    params : `Params`
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : `str`
        The directory in which to save results and logs.
    include_package : `List[str]`, optional
        In distributed mode, since this function would have been spawned as a separate process,
        the extra imports need to be done again. NOTE: This does not have any effect in single
        GPU training.
    dry_run : `bool`, optional (default=`False`)
        Do not train a model, but create a vocabulary, show dataset statistics and other training
        information.
    node_rank : `int`, optional
        Rank of the node.
    primary_addr : `str`, optional (default=`"127.0.0.1"`)
        Address of the primary node for distributed training.
    primary_port : `str`, optional (default=`"29500"`)
        Port of the primary node for distributed training.
    world_size : `int`, optional
        The number of processes involved in distributed training.
    distributed_device_ids: `List[str]`, optional
        IDs of the devices used involved in distributed training.
    file_friendly_logging : `bool`, optional (default=`False`)
        If `True`, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    include_in_archive : `List[str]`, optional
        Paths relative to `serialization_dir` that should be archived in addition to the default ones.
    distributed_params : `Optional[Params]`, optional
        Additional distributed params.

    # Returns

    best_model : `Optional[Model]`
        The model with the best epoch weights or `None` if in distributed training or in dry run.
    """
    common_logging.FILE_FRIENDLY_LOGGING = file_friendly_logging

    common_logging.prepare_global_logging(
        serialization_dir,
        rank=process_rank,
        world_size=world_size,
    )
    common_util.prepare_environment(params)

    distributed = world_size > 1

    primary = process_rank == 0

    include_package = include_package or []

    ddp_accelerator: Optional[DdpAccelerator] = None

    if distributed:
        assert distributed_device_ids is not None
        assert distributed_params is not None

        # Since the worker is spawned and not forked, the extra imports need to be done again.
        # Both the ones from the plugins and the ones from `include_package`.
        import_plugins()
        for package_name in include_package:
            common_util.import_module_and_submodules(package_name)

        num_procs_per_node = len(distributed_device_ids)
        # The Unique identifier of the worker process among all the processes in the
        # distributed training group is computed here. This is used while initializing
        # the process group using `init_process_group`
        global_rank = node_rank * num_procs_per_node + process_rank

        # Number of processes per node is useful to know if a process
        # is a primary in the local node(node in which it is running)
        os.environ["ALLENNLP_PROCS_PER_NODE"] = str(num_procs_per_node)

        # In distributed training, the configured device is always going to be a list.
        # The corresponding gpu id for the particular worker is obtained by picking the id
        # from the device list with the rank as index
        gpu_id = int(distributed_device_ids[process_rank])  # type: ignore

        # Till now, "cuda_device" might not be set in the trainer params.
        # But a worker trainer needs to only know about its specific GPU id.
        params["trainer"]["local_rank"] = process_rank
        params["trainer"]["cuda_device"] = gpu_id
        params["trainer"]["world_size"] = world_size
        params["trainer"]["distributed"] = True

        if gpu_id >= 0:
            torch.cuda.set_device(gpu_id)
            dist.init_process_group(
                backend="nccl",
                init_method=f"tcp://{primary_addr}:{primary_port}",
                world_size=world_size,
                rank=global_rank,
            )
        else:
            dist.init_process_group(
                backend="gloo",
                init_method=f"tcp://{primary_addr}:{primary_port}",
                world_size=world_size,
                rank=global_rank,
            )

        if "ddp_accelerator" in distributed_params:
            ddp_accelerator_params = distributed_params.pop("ddp_accelerator")
            ddp_accelerator = DdpAccelerator.from_params(
                ddp_accelerator_params,
                local_rank=process_rank,
                world_size=world_size,
                cuda_device=gpu_id,
            )

        logging.info(f"Process group of world size {world_size} initialized "
                     f"for distributed training in worker {global_rank}")

    train_loop = TrainModel.from_params(
        params=params,
        serialization_dir=serialization_dir,
        local_rank=process_rank,
        ddp_accelerator=ddp_accelerator,
    )

    if dry_run:
        return None

    try:
        if distributed:  # let the setup get ready for all the workers
            dist.barrier()

        metrics = train_loop.run()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if primary:
            best_weights_path = train_loop.trainer.get_best_weights_path()
            if best_weights_path is None:
                logging.info(
                    "Training interrupted by the user, and no best model has been saved. "
                    "No model archive created.")
            else:
                logging.info(
                    "Training interrupted by the user. Attempting to create "
                    "a model archive using the current best epoch weights.")
                archive_model(
                    serialization_dir,
                    weights=best_weights_path,
                    include_in_archive=include_in_archive,
                )
        raise

    if primary:
        train_loop.finish(metrics)

    if not distributed:
        return train_loop.model

    return None
Ejemplo n.º 27
0
def train_model(
    params: Params,
    serialization_dir: str,
    file_friendly_logging: bool = False,
    recover: bool = False,
    force: bool = False,
    cache_directory: str = None,
    cache_prefix: str = None,
    node_rank: int = 0,
    include_package: List[str] = None,
) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    # Parameters

    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    force : ``bool``, optional (default=False)
        If ``True``, we will overwrite the serialization directory if it already exists.
    cache_directory : ``str``, optional
        For caching data pre-processing.  See :func:`allennlp.training.util.datasets_from_params`.
    cache_prefix : ``str``, optional
        For caching data pre-processing.  See :func:`allennlp.training.util.datasets_from_params`.
    node_rank : ``int``, optional
        Rank of the current node in distributed training
    include_package : ``List[str]``, optional
        In distributed mode, extra packages mentioned will be imported in trainer workers.

    # Returns

    best_model : ``Model``
        The model with the best epoch weights.
    """
    create_serialization_dir(params, serialization_dir, recover, force)
    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    distributed_params = params.params.pop("distributed", None)
    # If distributed isn't in the config and the config contains strictly
    # one cuda device, we just run a single training process.
    if distributed_params is None:
        model = _train_worker(
            process_rank=0,
            params=params,
            serialization_dir=serialization_dir,
            file_friendly_logging=file_friendly_logging,
            recover=recover,
            cache_directory=cache_directory,
            cache_prefix=cache_prefix,
            include_package=include_package,
        )
        archive_model(serialization_dir,
                      files_to_archive=params.files_to_archive)
        return model

    # Otherwise, we are running multiple processes for training.
    else:
        # We are careful here so that we can raise a good error if someone
        # passed the wrong thing - cuda_devices are required.
        device_ids = distributed_params.pop("cuda_devices", None)
        multi_device = isinstance(device_ids, list) and len(device_ids) > 1
        num_nodes = distributed_params.pop("num_nodes", 1)

        if not (multi_device or num_nodes > 1):
            raise ConfigurationError(
                "Multiple cuda devices/nodes need to be configured to run distributed training."
            )
        check_for_gpu(device_ids)

        master_addr = distributed_params.pop("master_address", "127.0.0.1")
        master_port = distributed_params.pop("master_port", 29500)
        num_procs = len(device_ids)
        world_size = num_nodes * num_procs

        os.environ["MASTER_ADDR"] = master_addr
        os.environ["MASTER_PORT"] = str(master_port)
        os.environ["WORLD_SIZE"] = str(world_size)

        logging.info(
            f"Switching to distributed training mode since multiple GPUs are configured"
            f"Master is at: {master_addr}:{master_port} | Rank of this node: {node_rank} | "
            f"Number of workers in this node: {num_procs} | Number of nodes: {num_nodes} | "
            f"World size: {world_size}")

        # Creating `Vocabulary` objects from workers could be problematic since the data iterators
        # in each worker will yield only `rank` specific instances. Hence it is safe to construct
        # the vocabulary and write it to disk before initializing the distributed context. The workers
        # will load the vocabulary from the path specified.
        make_vocab_from_params(params.duplicate(), serialization_dir)
        params["vocabulary"] = {
            "directory_path": os.path.join(serialization_dir, "vocabulary"),
            "extend": False,  # vocab extension would have been done above
        }

        mp.spawn(
            _train_worker,
            args=(
                params.duplicate(),
                serialization_dir,
                file_friendly_logging,
                recover,
                cache_directory,
                cache_prefix,
                include_package,
                node_rank,
                master_addr,
                master_port,
                world_size,
                device_ids,
            ),
            nprocs=num_procs,
        )
        archive_model(serialization_dir,
                      files_to_archive=params.files_to_archive)
        model = Model.load(params, serialization_dir)
        return model
Ejemplo n.º 28
0
def train_model(params: Params, serialization_dir: str) -> Model:
    """
    This function can be used as an entry point to running models in AllenNLP
    directly from a JSON specification using a :class:`Driver`. Note that if
    you care about reproducibility, you should avoid running code using Pytorch
    or numpy which affect the reproducibility of your experiment before you
    import and use this function, these libraries rely on random seeds which
    can be set in this function via a JSON specification file. Note that this
    function performs training and will also evaluate the trained model on
    development and test sets if provided in the parameter json.

    Parameters
    ----------
    params: Params, required.
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir: str, required
        The directory in which to save results and logs.
    """
    prepare_environment(params)

    os.makedirs(serialization_dir, exist_ok=True)
    sys.stdout = TeeLogger(os.path.join(serialization_dir, "stdout.log"), sys.stdout)  # type: ignore
    sys.stderr = TeeLogger(os.path.join(serialization_dir, "stderr.log"), sys.stderr)  # type: ignore
    handler = logging.FileHandler(os.path.join(serialization_dir, "python_logging.log"))
    handler.setLevel(logging.INFO)
    handler.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s - %(name)s - %(message)s'))
    logging.getLogger().addHandler(handler)
    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, "model_params.json"), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    # Now we begin assembling the required parts for the Trainer.
    dataset_reader = DatasetReader.from_params(params.pop('dataset_reader'))

    train_data_path = params.pop('train_data_path')
    logger.info("Reading training data from %s", train_data_path)
    train_data = dataset_reader.read(train_data_path)

    all_datasets: List[Dataset] = [train_data]
    datasets_in_vocab = ["train"]

    validation_data_path = params.pop('validation_data_path', None)
    if validation_data_path is not None:
        logger.info("Reading validation data from %s", validation_data_path)
        validation_data = dataset_reader.read(validation_data_path)
        all_datasets.append(validation_data)
        datasets_in_vocab.append("validation")
    else:
        validation_data = None

    test_data_path = params.pop("test_data_path", None)
    if test_data_path is not None:
        logger.info("Reading test data from %s", test_data_path)
        test_data = dataset_reader.read(test_data_path)
        all_datasets.append(test_data)
        datasets_in_vocab.append("test")
    else:
        test_data = None

    logger.info("Creating a vocabulary using %s data.", ", ".join(datasets_in_vocab))
    vocab = Vocabulary.from_params(params.pop("vocabulary", {}),
                                   Dataset([instance for dataset in all_datasets
                                            for instance in dataset.instances]))
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    model = Model.from_params(vocab, params.pop('model'))
    iterator = DataIterator.from_params(params.pop("iterator"))

    train_data.index_instances(vocab)
    if validation_data:
        validation_data.index_instances(vocab)

    trainer_params = params.pop("trainer")
    trainer = Trainer.from_params(model,
                                  serialization_dir,
                                  iterator,
                                  train_data,
                                  validation_data,
                                  trainer_params)

    evaluate_on_test = params.pop("evaluate_on_test", False)
    params.assert_empty('base train command')
    trainer.train()

    # Now tar up results
    archive_model(serialization_dir)

    if test_data and evaluate_on_test:
        test_data.index_instances(vocab)
        evaluate(model, test_data, iterator, cuda_device=trainer._cuda_device)  # pylint: disable=protected-access

    elif test_data:
        logger.info("To evaluate on the test set after training, pass the "
                    "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    return model
Ejemplo n.º 29
0
def train_model(params: Params,
                serialization_dir: str,
                selector: str,
                num_ensemble_models: Optional[int],
                file_friendly_logging: bool = False,
                recover: bool = False,
                force: bool = False) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.

    Returns
    -------
    best_model: ``Model``
        The model with the best epoch weights.
    """
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover, force)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    cuda_device = params.params.get('trainer').get('cuda_device', -1)
    if isinstance(cuda_device, list):
        for device in cuda_device:
            check_for_gpu(device)
    else:
        check_for_gpu(cuda_device)

    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("From dataset instances, %s will be considered for vocabulary creation.",
                ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
            params.pop("vocabulary", {}),
            (instance for key, dataset in all_datasets.items()
             for instance in dataset
             if key in datasets_for_vocab_creation)
    )

    model_params = params.pop('model')
    if selector == 'qbc':
        assert num_ensemble_models is not None
        models_list = [Model.from_params(vocab=vocab, params=model_params.duplicate()) for i in range(num_ensemble_models)]
        ensemble_model = CorefEnsemble(models_list)
        model = ensemble_model.submodels[0]
    else:
        model = Model.from_params(vocab=vocab, params=model_params)
        ensemble_model = None

    # Initializing the model can have side effect of expanding the vocabulary
    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)
    validation_iterator_params = params.pop("validation_iterator", None)
    if validation_iterator_params:
        validation_iterator = DataIterator.from_params(validation_iterator_params)
        validation_iterator.index_with(vocab)
    else:
        validation_iterator = None
    held_out_iterator_params = params.pop("held_out_iterator", None)
    if held_out_iterator_params:
        held_out_iterator = DataIterator.from_params(held_out_iterator_params)
        held_out_iterator.index_with(vocab)
    else:
        held_out_iterator = None

    train_data = all_datasets['train']
    held_out_train_data = all_datasets.get('held_out_train')
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer_choice = trainer_params.pop("type")
    trainer = ALCorefTrainer.by_name(trainer_choice).from_params(model=model,
                                                                serialization_dir=serialization_dir,
                                                                iterator=iterator,
                                                                train_data=train_data,
                                                                held_out_train_data=held_out_train_data,
                                                                validation_data=validation_data,
                                                                params=trainer_params,
                                                                validation_iterator=validation_iterator,
                                                                held_out_iterator=held_out_iterator,
                                                                ensemble_model=ensemble_model)
    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics, query_info = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info("Training interrupted by the user. Attempting to create "
                         "a model archive using the current best epoch weights.")
            archive_model(serialization_dir, files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    best_model = None
    logger.info("Loading the best epoch weights.")
    best_model_state_path = os.path.join(serialization_dir, 'best.th')
    best_model_state = torch.load(best_model_state_path)
    best_model = model
    best_model.load_state_dict(best_model_state)
    
    if test_data and evaluate_on_test:
        logger.info("The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
            best_model, test_data, validation_iterator or iterator,
            cuda_device=trainer._cuda_devices[0],
            batch_weight_key="",
        )
        for key, value in test_metrics.items():
            metrics["test_" + key] = value
    return best_model, metrics, query_info
Ejemplo n.º 30
0
def train_model(params: Params,
                serialization_dir: str,
                file_friendly_logging: bool = False,
                recover: bool = False) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.

    Returns
    -------
    best_model: ``Model``
        The model with the best epoch weights.
    """
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    check_for_gpu(params.params.get('trainer').get('cuda_device', -1))

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(
        params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(
                f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info("Creating a vocabulary using %s data.",
                ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
        params.pop("vocabulary", {}),
        (instance for key, dataset in all_datasets.items()
         for instance in dataset if key in datasets_for_vocab_creation))

    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    model = Model.from_params(vocab=vocab, params=params.pop('model'))
    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)
    validation_iterator_params = params.pop("validation_iterator", None)
    if validation_iterator_params:
        validation_iterator = DataIterator.from_params(
            validation_iterator_params)
        validation_iterator.index_with(vocab)
    else:
        validation_iterator = None

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer = Trainer.from_params(model,
                                  serialization_dir,
                                  iterator,
                                  train_data,
                                  validation_data,
                                  trainer_params,
                                  validation_iterator=validation_iterator)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    logger.info("Loading the best epoch weights.")
    best_model_state_path = os.path.join(serialization_dir, 'best.th')
    best_model_state = torch.load(best_model_state_path)
    best_model = model
    best_model.load_state_dict(best_model_state)

    if test_data and evaluate_on_test:
        logger.info(
            "The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
            best_model,
            test_data,
            validation_iterator or iterator,
            cuda_device=trainer._cuda_devices[0]  # pylint: disable=protected-access
        )
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"),
              "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return best_model
    #with open(sentence_output, "w") as f:
        #with open(sentence_file, "r") as sentences:
            #for sentence in sentences:
                #jsonl = '{' + '"' + 'sentence'  + '"'  + ' : ' + '"' +  sentence.replace('\n','') + '"' + '}'
                #f.write(jsonl)
                #f.write('\n')
    #print('sents staged')

    with open(model_path + 'vocabulary/labels.txt', "r") as vocab:
        for label in vocab:
            labels.append(label.rstrip())
    #including this redirection in order to load the best model only
    if os.path.exists(model_path + 'model.tar.gz'):
        os.remove(model_path + 'model.tar.gz')

    archive_model(model_path, 'best.th')
    print('best model archived')

    archive = load_archive(model_path + 'model.tar.gz')
    
    predictor = Predictor.from_archive(archive, 'oie_crf')
    #iterate through sentences
    instance_iterator = 0

    #sentences = 'tests/fixtures/oie_test.jsonl'
    print('starting to predict on sents')
    with open(sentence_output, "r") as sents:
        with open(output_path, 'a') as f:
            for sent in sents:
                 inp = json.loads(sent)
                 #run model on sentence
Ejemplo n.º 32
0
def _train_worker(
    process_rank: int,
    params: Params,
    serialization_dir: str,
    file_friendly_logging: bool = False,
    include_package: List[str] = None,
    batch_weight_key: str = "",
    node_rank: int = 0,
    master_addr: str = "127.0.0.1",
    master_port: int = 29500,
    world_size: int = 1,
    distributed_device_ids: List[str] = None,
) -> Optional[Model]:
    """
    Helper to train the configured model/experiment. In distributed mode, this is spawned as a
    worker process. In a single GPU experiment, this returns the ``Model`` object and in distributed
    training, nothing is returned.

    # Parameters

    process_rank : ``int``
        The process index that is initialized using the GPU device id.
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    include_package : ``List[str]``, optional
        In distributed mode, since this function would have been spawned as a separate process,
        the extra imports need to be done again. NOTE: This does not have any effect in single
        GPU training.
    batch_weight_key : ``str``, optional (default="")
        If non-empty, name of metric used to weight the loss on a per-batch basis.
    node_rank : ``int``, optional
        Rank of the node.
    master_addr : ``str``, optional (default="127.0.0.1")
        Address of the master node for distributed training.
    master_port : ``str``, optional (default="29500")
        Port of the master node for distributed training.
    world_size : ``int``, optional
        The number of processes involved in distributed training.
    distributed_device_ids: ``List[str]``, optional
        IDs of the devices used involved in distributed training.

    # Returns

    best_model : ``Model``
        The model with the best epoch weights.
    """
    common_util.prepare_global_logging(serialization_dir,
                                       file_friendly_logging,
                                       rank=process_rank,
                                       world_size=world_size)
    common_util.prepare_environment(params)

    distributed = world_size > 1

    # not using `allennlp.common.util.is_master` as the process group is yet to be initialized
    master = process_rank == 0

    include_package = include_package or []

    if distributed:
        # Since the worker is spawned and not forked, the extra imports need to be done again.
        import_plugins()
        for package_name in include_package:
            common_util.import_submodules(package_name)

        num_procs_per_node = len(distributed_device_ids)
        # The Unique identifier of the worker process among all the processes in the
        # distributed training group is computed here. This is used while initializing
        # the process group using `init_process_group`
        global_rank = node_rank * num_procs_per_node + process_rank

        # Number of processes per node is useful to know if a process
        # is a master in the local node(node in which it is running)
        os.environ["ALLENNLP_PROCS_PER_NODE"] = str(num_procs_per_node)

        # In distributed training, the configured device is always going to be a list.
        # The corresponding gpu id for the particular worker is obtained by picking the id
        # from the device list with the rank as index
        gpu_id = distributed_device_ids[process_rank]  # type: ignore

        # Till now, "cuda_device" might not be set in the trainer params.
        # But a worker trainer needs to only know about its specific GPU id.
        params["trainer"]["cuda_device"] = gpu_id
        params["trainer"]["world_size"] = world_size
        params["trainer"]["distributed"] = True

        torch.cuda.set_device(int(gpu_id))
        dist.init_process_group(
            backend="nccl",
            init_method=f"tcp://{master_addr}:{master_port}",
            world_size=world_size,
            rank=global_rank,
        )
        logging.info(f"Process group of world size {world_size} initialized "
                     f"for distributed training in worker {global_rank}")

    train_loop = TrainModel.from_params(
        params=params,
        serialization_dir=serialization_dir,
        local_rank=process_rank,
        batch_weight_key=batch_weight_key,
    )

    try:
        if distributed:  # let the setup get ready for all the workers
            dist.barrier()

        metrics = train_loop.run()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if master and os.path.exists(
                os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir)
        raise

    if master:
        train_loop.finish(metrics)

    if not distributed:
        return train_loop.model

    return None  # to make mypy happy
def modified_train_model(serialization_dir,
                         training_config_filename,
                         cuda_device=-1,
                         file_friendly_logging: bool = False) -> Model:
    """
        Function not currently in use. This is from back when I was trying to keep each successive
        addition to the model's training in the same serialization directory.

    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.
    Parameters
    ----------
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.
    Returns
    -------
    best_model: ``Model``
        The model with the best epoch weights.
    """
    model, params, prev_optimizer_params, cur_optimizer_params = \
        load_model_from_serialization_dir(serialization_dir, training_config_filename, cuda_device=cuda_device)
    prepare_environment(params)

    prepare_global_logging(serialization_dir, file_friendly_logging)

    cuda_device = params.params.get('trainer').get('cuda_device', -1)
    if isinstance(cuda_device, list):
        for device in cuda_device:
            check_for_gpu(device)
    else:
        check_for_gpu(cuda_device)

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(
        params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(
                f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info(
        "From dataset instances, %s will be considered for vocabulary creation.",
        ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
        params.pop("vocabulary", {}),
        (instance for key, dataset in all_datasets.items()
         for instance in dataset if key in datasets_for_vocab_creation))

    params.pop('model')

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)
    validation_iterator_params = params.pop("validation_iterator", None)
    if validation_iterator_params:
        validation_iterator = DataIterator.from_params(
            validation_iterator_params)
        validation_iterator.index_with(vocab)
    else:
        validation_iterator = None

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    list_of_cur_optimizer_param_keys = [
        key for key in cur_optimizer_params.as_flat_dict().keys()
    ]
    list_of_prev_optimizer_param_keys = [
        key for key in prev_optimizer_params.as_flat_dict().keys()
    ]
    optimizer_params_match = True
    for key in list_of_cur_optimizer_param_keys:
        if key not in list_of_prev_optimizer_param_keys:
            optimizer_params_match = False
            break
    for key in list_of_prev_optimizer_param_keys:
        if key not in list_of_cur_optimizer_param_keys:
            optimizer_params_match = False
            break
    if not optimizer_params_match:
        # a list of each p is what will be passed to the optimizer constructor while constructing Trainer--
        # adjust if necessary (i.e., if we changed optimizers)
        model_params = [[n, p] for n, p in model.named_parameters()
                        if p.requires_grad]
        assert "parameter_groups" not in list_of_cur_optimizer_param_keys, \
            "Current way of dealing with optimizer change doesn't take parameter groups into account"
        assert "parameter_groups" not in list_of_prev_optimizer_param_keys, \
            "Current way of dealing with optimizer change doesn't take parameter groups into account"
        for param_tup in model_params:
            # modify the second element of param_tup in-place (it's a dict) to match the keys specified in
            # cur_optimizer_params
            param_dict = param_tup[1]
            keys_to_del = []
            keys_already_in_dict = []
            try:
                for key in param_dict.keys():
                    if not key in list_of_cur_optimizer_param_keys:
                        keys_to_del.append(key)
                    else:
                        keys_already_in_dict.append(key)
                for key in keys_to_del:
                    del param_dict[key]
                for key_to_have in list_of_cur_optimizer_param_keys:
                    if key_to_have != "type" and key_to_have not in keys_already_in_dict:
                        param_dict[key_to_have] = cur_optimizer_params.get(
                            key_to_have)
            except:
                pass

    trainer = Trainer.from_params(model=model,
                                  serialization_dir=serialization_dir,
                                  iterator=iterator,
                                  train_data=train_data,
                                  validation_data=validation_data,
                                  params=trainer_params,
                                  validation_iterator=validation_iterator)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    logger.info("Loading the best epoch weights.")
    best_model_state_path = os.path.join(serialization_dir, 'best.th')
    best_model_state = torch.load(best_model_state_path)
    best_model = model
    best_model.load_state_dict(best_model_state)

    if test_data and evaluate_on_test:
        logger.info(
            "The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
            best_model,
            test_data,
            validation_iterator or iterator,
            cuda_device=trainer._cuda_devices[0]  # pylint: disable=protected-access
        )
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    dump_metrics(os.path.join(serialization_dir, "metrics.json"),
                 metrics,
                 log=True)

    return best_model