Ejemplo n.º 1
0
def test_performance(factor, prices):
    import matplotlib.pyplot as plt
    from alphalens import utils, performance, plotting

    # 持股收益-逐只
    stocks_holding_return = utils.get_clean_factor_and_forward_returns(factor,
                                                                       prices,
                                                                       quantiles=5,
                                                                       periods=(1, 5, 10))

    print("因子的IC值:")
    ic = performance.factor_information_coefficient(stocks_holding_return)
    print(ic)
    plotting.plot_ic_hist(ic)
    plt.show()
    plotting.plot_ic_ts(ic)
    plt.show()

    print("平均IC值-月:")
    mean_ic = performance.mean_information_coefficient(stocks_holding_return,
                                                       by_time="M")
    plotting.plot_monthly_ic_heatmap(mean_ic)
    plt.show()

    # 按quantile区分的持股平均收益(减去了总体平均值)
    mean_return_by_q = performance.mean_return_by_quantile(stocks_holding_return,
                                                           by_date=True,
                                                           demeaned=True)[0]
    # 按quantile画出累积持有收益
    for i in [1, 5, 10]:
        plotting.plot_cumulative_returns_by_quantile(mean_return_by_q,
                                                     period=i)
        plt.show()
Ejemplo n.º 2
0
 def create_ic_tear_sheet(self):
     factor_and_return = self._get_clean_factor_and_fwd_return(
         self._factor, self._factor_freq)
     ic = factor_information_coefficient(factor_and_return)
     plot_ic_hist(ic)
     self.ic_bar_tear_sheet(ic)
     plot_monthly_ic_heatmap(ic)
     plt.show()
     return
# 3)计算加权合成的因子
new_factor = factor_admin.ic_cov_weighted_factor(factors_dict, ic_weight_df)

# 4)查看合成的因子表现
perf = factor_admin.calculate_performance(new_factor.name,
                                          new_factor.multifactor_value,
                                          start,
                                          end,
                                          periods=(1, 5, 10),
                                          quantiles=5,
                                          price=prices)

from alphalens import plotting
import matplotlib.pyplot as plt

plotting.plot_ic_hist(perf.ic)
plt.show()
plotting.plot_ic_ts(perf.ic)
plt.show()
plotting.plot_monthly_ic_heatmap(perf.mean_ic_by_M)
plt.show()

# 按quantile画出累积持有收益
for i in [1, 5, 10]:
    plotting.plot_cumulative_returns_by_quantile(perf.mean_return_by_q,
                                                 period=i)
    plt.show()

# 5) shrink_weight_df合成
holding_period = 10
ic_weight_shrink_df = factor_admin.get_ic_weight_shrink_df(
Ejemplo n.º 4
0
"""
import pandas as pd
import numpy as np
import scipy.stats as st
from alphalens import tears, performance, plotting, utils

df = pd.DataFrame([[1, 2], [4, 5]], columns=["A", "B"])

# 计算斯皮尔相关系数Rank IC,取值 [-1, 1]之间
print(st.spearmanr(df["A"], df["B"]))

"""使用alphalens更简易的做因子分析"""
# 输入因子表和收盘价表到返回到期收益率表,再将因子表和到期收益表整合返回综合因子数据表
factor_data = utils.get_clean_factor_and_forward_returns("factor", "price")
# 因子IC的计算
IC = performance.factor_information_coefficient(factor_data)
# 因子时间序列和移动平均图,看出一个因子在时间上的正负性、
plotting.plot_ic_ts(IC)
# 因子分布直方图,IC平均值,标准差
plotting.plot_ic_hist(IC)
# 热力图
mean_monthly_ic = performance.mean_information_coefficient(factor_data, by_time="1m")
plotting.plot_monthly_ic_heatmap(mean_monthly_ic)
# IC分析合集
tears.create_information_tear_sheet(factor_data)

# 收益率分析
tears.create_returns_tear_sheet(factor_data)
# 因子的每一期的收益(因子收益)
performance.factor_returns(factor_data).iloc[:, 0].mean()