Ejemplo n.º 1
0
 def fetch_train_data(self, ref_date, alpha_model: ModelBase):
     return fetch_train_phase(SqlEngine(self.data_source),
                              alpha_model.formulas,
                              ref_date,
                              self.freq,
                              self.universe,
                              self.batch,
                              self.neutralized_risk,
                              self.risk_model,
                              self.pre_process,
                              self.post_process,
                              self.warm_start,
                              fit_target=alpha_model.fit_target)
Ejemplo n.º 2
0
 def fetch_train_data(self,
                      ref_date,
                      alpha_model: ModelBase):
     return fetch_train_phase(self.engine,
                              alpha_model.formulas,
                              ref_date,
                              self.freq,
                              self.universe,
                              self.batch,
                              self.neutralized_risk,
                              self.risk_model,
                              self.pre_process,
                              self.post_process,
                              self.warm_start)
Ejemplo n.º 3
0
    def train(self, ref_date: str):
        train_data = fetch_train_phase(
            self.data_meta.engine, self.data_meta.alpha_factors, ref_date,
            self.data_meta.freq, self.data_meta.universe, self.data_meta.batch,
            self.data_meta.neutralized_risk, self.data_meta.risk_model,
            self.data_meta.pre_process, self.data_meta.post_process,
            self.data_meta.warm_start)

        x_values = train_data['train']['x']
        y_values = train_data['train']['y']
        self.alpha_model.fit(x_values, y_values)

        self.models[ref_date] = copy.deepcopy(self.alpha_model)
        self.is_updated = False
Ejemplo n.º 4
0
    def model_train(self, ref_date: str):

        if not self.is_const_model:
            if self.cached_data and ref_date in self.scheduled_dates:
                ref_date = dt.datetime.strptime(ref_date, '%Y-%m-%d')
                ne_x = self.cached_data['train']['x'][ref_date]
                ne_y = self.cached_data['train']['y'][ref_date]
            else:
                data = fetch_train_phase(self.data_source, self.features,
                                         ref_date, self.freq, self.universe,
                                         self.batch, self.neutralize_risk,
                                         self.risk_model, self.pre_process,
                                         self.post_process, self.warm_start)

                ne_x = data['train']['x']
                ne_y = data['train']['y']
            self.model.fit(ne_x, ne_y)