Ejemplo n.º 1
0
def returns_chart(report):
    # Time interval selector
    time_interval = alt.selection(type='interval', encodings=['x'])

    # Area plot
    areas = alt.Chart().mark_area(opacity=0.7).encode(x='index:T',
                                                      y=alt.Y('accumulated return:Q', axis=alt.Axis(format='%')))

    # Nearest point selector
    nearest = alt.selection(type='single', nearest=True, on='mouseover', fields=['index'], empty='none')

    points = areas.mark_point().encode(opacity=alt.condition(nearest, alt.value(1), alt.value(0)))

    # Transparent date selector
    selectors = alt.Chart().mark_point().encode(
        x='index:T',
        opacity=alt.value(0),
    ).add_selection(nearest)

    text = areas.mark_text(
        align='left', dx=5,
        dy=-5).encode(text=alt.condition(nearest, 'accumulated return:Q', alt.value(' '), format='.2%'))

    layered = alt.layer(selectors,
                        points,
                        text,
                        areas.encode(
                            alt.X('index:T', axis=alt.Axis(title='date'), scale=alt.Scale(domain=time_interval))),
                        width=700,
                        height=350,
                        title='Returns over time')

    lower = areas.properties(width=700, height=70).add_selection(time_interval)

    return alt.vconcat(layered, lower, data=report.reset_index())
Ejemplo n.º 2
0
def get_names(names=["Robin", "Oliver"]):
    THIS_FOLDER = os.path.dirname(os.path.abspath(__file__))
    filename = os.path.join(THIS_FOLDER, "./static/Personer.csv")

    df = pd.read_csv(filename, sep=";", encoding="ISO-8859-1")
    df = prepare_data(df, names)

    # Nerest selection
    nearest = alt.selection(type='single',
                            nearest=True,
                            on='mouseover',
                            fields=['år'],
                            empty='none')
    highlight = alt.selection(type='single',
                              on='mouseover',
                              fields=['name'],
                              nearest=True)

    base = alt.Chart(df).encode(x='år:T', y='Antall:Q', color='name:N')

    points = base.mark_circle().encode(
        opacity=alt.value(0)).add_selection(highlight).properties(width=600)

    lines = base.mark_line().encode(
        size=alt.condition(~highlight, alt.value(1), alt.value(3)))

    fig = alt.layer(lines, points).properties(width=1200, height=700)

    return fig.to_json(indent=None)
Ejemplo n.º 3
0
def skyview_cmd(subsample, out_file, data_type='kepler'):
    brush = alt.selection(
        type='interval',
        resolve='global',
        on="[mousedown[event.shiftKey], window:mouseup] > \
                          window:mousemove!",
        zoom='False',
        translate="[mousedown[event.shiftKey], window:mouseup] > \
                          window:mousemove!")

    pan = alt.selection(
        type='interval',
        bind='scales',
        on="[mousedown[!event.shiftKey], window:mouseup] > \
                        window:mousemove!",
        translate="[mousedown[!event.shiftKey], window:mouseup] > \
                        window:mousemove!")

    if data_type == 'kepler':
        scale = alt.Scale(domain=['none', 'cand', 'conf'],
                          range=['#4a69bd', '#e55039', '#f6b93b'])
        color = alt.Color('planet?:N', scale=scale)
        xscale = alt.Scale(domain=[270, 310])
        yscale = alt.Scale(domain=[35, 55])
    elif data_type == 'k2':
        #scale = alt.Scale(domain=['none', 'cand'],
        #              range=['#4a69bd', '#e55039'])
        #color = alt.Color('k2c_disp:N', scale=scale)
        color = 'k2c_disp'
        xscale = alt.Scale(domain=[0, 360])
        yscale = alt.Scale(domain=[-90, 90])
    else:
        print("ERROR: data_type not recognized")
        return

    chart1 = alt.Chart(subsample).mark_point().encode(
        alt.X('ra_gaia', scale=xscale, axis=alt.Axis(title='Gaia RA (deg)')),
        alt.Y('dec_gaia', scale=yscale, axis=alt.Axis(title='Gaia Dec (deg)')),
        color=alt.condition(brush, color, alt.ColorValue('gray'))).properties(
            selection=brush + pan,
            projection={'type': 'gnomonic'},
            width=450,
            height=500)

    chart2 = alt.Chart(subsample).mark_point().encode(
        alt.X('gaiamag_minus_kepmag', axis=alt.Axis(title='G - K (mag)')),
        alt.Y('abs_gmag', axis=alt.Axis(title='abs. G')),
        color=alt.condition(brush, color, alt.ColorValue('gray'))).properties(
            selection=brush, width=450, height=500)

    chart = chart1 | chart2
    chart.savechart(out_file)
Ejemplo n.º 4
0
def plot_both(county="all counties", start=None, end=None):
    """
    Gets a dataframe by calling __read_csv with the seelcted arguments.
    Creates a plot of cumulative cases over one y-axis and new cases over the other y-axis

    Args:
        county(str): Name of a county or all counties. Default value is all counties.
        start(str): Start date in the format "%d.%m.%Y". Default value is None and translates to first date in dataset.
        end(str): En date in the format "%d.%m.%Y". Default value is None and translates to first date in dataset.
    Returns:
        (Altair.Chart): A chart with the number of cases and cumulative number of cases plotted against the dates.
    """
    cases = __read_csv(county, start, end)
    nearest_line = alt.selection(type="single",
                                 on="mouseover",
                                 fields=["Dato"],
                                 empty="none")
    nearest_bar = alt.selection(type="single",
                                on="mouseover",
                                fields=["Dato"],
                                empty="none")
    base = (alt.Chart(cases).encode(alt.X("Dato", title="Date")).properties(
        title=
        f"Number of reported COVID-19 cases in {county} by specimen collection date"
    ))

    line = (base.mark_line(color="red").encode(
        alt.Y("Kumulativt antall",
              axis=alt.Axis(title="Cumulative number of cases")),
        tooltip=[
            alt.Tooltip("Dato", title="Date"),
            alt.Tooltip("Kumulativt antall",
                        title="Cumulative number of cases"),
        ],
        size=alt.condition(nearest_line, alt.value(5), alt.value(3)),
    ).add_selection(nearest_line))

    bar = (base.mark_bar(size=n / len(cases) + 0.5).encode(
        alt.Y("Nye tilfeller", axis=alt.Axis(title="New cases")),
        tooltip=[
            alt.Tooltip("Dato", title="Date"),
            alt.Tooltip("Nye tilfeller", title="New cases"),
        ],
        opacity=alt.condition(nearest_bar, alt.value(1), alt.value(0.7)),
    ).add_selection(nearest_bar))

    layered = (alt.layer(line, bar).resolve_scale(y="independent").properties(
        width=600, height=500))

    return layered
def mean_price_of_diesel_s10_over_time_by_region(df):

    df_product_diesels10 = df[df.Product == 'DIESEL S10'].reset_index(
        drop=True)

    highlight = alt.selection(type='single',
                              on='mouseover',
                              fields=['Macroregion'],
                              nearest=True)

    k = alt.Chart(
        df_product_diesels10,
        title='Mean Price of Diesel S10 Over Time by Region').mark_line(
        ).encode(x='Year_Month',
                 y='mean(Mean_Price)',
                 color=alt.Color(
                     'Macroregion',
                     legend=alt.Legend(
                         title="Macroregion by color"))).properties(width=1000,
                                                                    height=400)

    points = k.mark_line().encode(
        opacity=alt.value(0)).add_selection(highlight).properties(width=600)

    lines = k.mark_line().encode(
        size=alt.condition(~highlight, alt.value(1), alt.value(3)))

    st.altair_chart(points + lines)
Ejemplo n.º 6
0
    def get_map(self, day_str, title=""):
        chart_data = self._prepare_dataset(day_str)

        source = alt.topo_feature(data.world_110m.url, 'countries')
        background = alt.Chart(source).mark_geoshape(
            fill="lightgray",
            stroke="white").properties(width=1000,
                                       height=500).project("equirectangular")

        hover = alt.selection(type='single',
                              on='mouseover',
                              nearest=False,
                              fields=[self.col_lat, self.col_long])
        text = background.mark_text(dy=-5, align='right').encode(
            alt.Text(f'{self.col_name_countries}:N', type='nominal'),
            opacity=alt.condition(~hover, alt.value(0), alt.value(1)))

        points = alt.Chart(chart_data).mark_circle().encode(
            latitude=f"{self.col_lat}:Q",
            longitude=f"{self.col_long}:Q",
            size=alt.Size(f"{day_str}:Q",
                          scale=alt.Scale(range=[0, 7000]),
                          legend=None),
            order=alt.Order(f"{day_str}:Q", sort="descending"),
            tooltip=[f'{self.col_name_countries}:N', f'{day_str}:Q'
                     ]).add_selection(hover).properties(title=title)

        chart = alt.layer(background, points, text)

        return chart
Ejemplo n.º 7
0
def plot_norway():
    """ Makes a interactive geomap of norway with number of cases per 100k in every county.

    :return: the html file showing interactive geomap.
    """

    data = pd.read_csv("resources/covid_rate_per_100000.csv",
                       sep=';',
                       index_col=False)
    county_list = data["Category"].to_list()
    insidens_list = [
        float(i.replace(',', '.')) for i in data["Insidens"].to_list()
    ]

    data_as_dict = {"Category": county_list, "Insidens": insidens_list}
    df = pd.DataFrame.from_dict(data_as_dict)

    counties = alt.topo_feature(
        "https://raw.githubusercontent.com/deldersveld/topojson/master/countries/norway/norway-new-counties.json",
        "Fylker")

    nearest = alt.selection(type="single",
                            on="mouseover",
                            fields=["properties.navn"],
                            empty="none")

    fig = alt.Chart(counties).mark_geoshape().encode(
        tooltip=[
            alt.Tooltip("properties.navn:N", title="County"),
            alt.Tooltip("Insidens:Q", title="Cases per 100k capita"),
        ],
        color=alt.Color("Insidens:Q",
                        scale=alt.Scale(scheme="reds"),
                        legend=alt.Legend(title="Cases per 100k capita")),
        stroke=alt.condition(nearest, alt.value("gray"), alt.value(None)),
        opacity=alt.condition(nearest, alt.value(1), alt.value(0.8)),
    ).transform_lookup(
        lookup="properties.navn",
        from_=alt.LookupData(df, "Category", ["Insidens"])).properties(
            width=700,
            height=800,
            title="Number of cases per 100k in every county",
        ).add_selection(nearest)

    fig.save("templates/interactive_map.html")

    soup = BeautifulSoup(open("templates/interactive_map.html"), 'html.parser')

    head = soup.find('head')
    body = soup.find('body')
    script = soup.find('body').find('script')

    return render_template(
        "map.html",
        head=head,
        body=body,
        script=script,
        from_date=from_date,
        to_date=to_date,
    )
Ejemplo n.º 8
0
    def users_and_queries_chart(self):
        df = self.users_and_queries_data()
        brush = alt.selection(type='interval', encodings=['y'])
        color = alt.condition(brush, alt.Color('count(Queries):Q'),
                              alt.value('gray'))
        heat = alt.Chart(df).mark_rect().encode(
            x=alt.X("hours(Time):O", title='Time'),
            y=alt.Y("monthdate(Time):O", title='Number of queries'),
            color=color,
            tooltip=alt.Tooltip(['sum(Queries):Q', "hours(Time):O"
                                 ])).properties(height=350,
                                                width=700).add_selection(brush)
        line = alt.Chart(df).mark_bar().encode(
            x=alt.X('sender:N'),
            y=alt.Y('count():Q', scale=alt.Scale(
                domain=[0, 10]))).transform_filter(brush).properties(
                    height=200, width=675)

        rule = alt.Chart(df).transform_joinaggregate(
            group_count='count(*)',
            groupby=['sender']).mark_rule(color='red').encode(
                y=alt.Y('mean(group_count):Q')).transform_filter(brush)
        red = alt.Chart(df).transform_joinaggregate(
            group_count='count(*)',
            groupby=['sender']).mark_rule(color='red').encode(
                y='mean(group_count):Q').transform_filter(brush)
        heatmap = alt.vconcat(heat, line + rule + red)

        return heatmap
Ejemplo n.º 9
0
def density_plot(data, stats, Season):
    """
    creates a visualization of one square yard of seeded planting in plan view
    """
    source = format_plotdata(data, stats, Season)
    if Season == 'Winter':
        pcolor = wcolor
    else:
        pcolor = color
    #interactive highlight function
    highlight = alt.selection(type='single',
                              fields=['species', 'common_name'],
                              empty="all")
    #define the density plot
    visualizeseeds = alt.Chart(
        data=source, title='Plan View of Proposed Planting').mark_point(
            filled=True, size=100).encode(
                x=alt.X('x', axis=alt.Axis(title='1 yard')),
                y=alt.Y('y', axis=alt.Axis(title='1 yard')),
                color=pcolor,
                shape=shape,
                tooltip=['species:N', 'common_name:N'],
            ).add_selection(highlight).properties(
                width=650, height=515).configure(background='#D3D3D3')

    return visualizeseeds
Ejemplo n.º 10
0
def generate_chart(df):
    if Config.is_continuous:
        base = alt.Chart(df).mark_line().encode(x="x", y="y", color="label")
    else:
        base = alt.Chart(df).mark_bar(opacity=0.2).encode(
            x="x:O",
            y=alt.Y('y', stack=None),
            color="label",
        )
    nearest = alt.selection(
        type="single",
        nearest=True,
        on="mouseover",
        encodings=["x"],
        empty="none",
    )
    selectors = alt.Chart(df).mark_point().encode(
        x=f'x:{"Q" if Config.is_continuous else "O"}',
        opacity=alt.value(0),
    ).add_selection(nearest)
    rules = alt.Chart(df).mark_rule(color='gray').encode(
        x=f'x:{"Q" if Config.is_continuous else "O"}', ).transform_filter(
            nearest)
    points = base.mark_point().encode(
        opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
    text = base.mark_text(align='left', dx=5, dy=-5).encode(text=alt.condition(
        nearest, 'xy:N', alt.value(' '))).transform_calculate(xy=expr.join([
            "(",
            expr.toString(expr.round(datum.x * 100) / 100), ', ',
            expr.toString(expr.round(datum.y * 100) / 100), ")"
        ], ''))
    chart = alt.layer(base, selectors, rules, points, text)
    return chart
Ejemplo n.º 11
0
def wickets_vs_season(player):
    wickets_vs_seasons = dr.wickets_in_season[dr.wickets_in_season['player'] == player]
    wickets_vs_seasons_base = alt.Chart(wickets_vs_seasons).encode(
        x='season:O',
        y='wickets:Q',
        tooltip=['player', 'wickets', 'matches'],
    )
    highlight = alt.selection(type='multi', on='mouseover',
                              fields=['season'], nearest=True)

    wickets_vs_season_points = wickets_vs_seasons_base.mark_circle().encode(
        opacity=alt.condition(~highlight, alt.value(0.7), alt.value(1)),
        size=alt.condition(~highlight, alt.value(70), alt.value(140))
    ).add_selection(
        highlight,
    ).properties(
        height=300,
        width=900
    )

    wickets_vs_season_lines = wickets_vs_seasons_base.mark_line(point=True).encode(
        opacity=alt.condition(~highlight, alt.value(0.7), alt.value(0.7)),
        size=alt.condition(~highlight, alt.value(2), alt.value(2))
    )
    return (wickets_vs_season_points + wickets_vs_season_lines).configure_axis(
        grid=False
    ).configure_view(
        strokeOpacity=0
    ).configure_axisBottom(
        labelAngle=0
    )
Ejemplo n.º 12
0
def reproduction_rate_chart(data):
    chart_reproduction_rate = alt.Chart(data).mark_line(
        point=True, color='red').encode(
            alt.X("monthdate(day):O", title="Tag"),
            alt.Y("reproduction_rate:Q", title="Reproduktionsrate"))

    reproduction_nearest = alt.selection(type='single',
                                         nearest=True,
                                         on='mouseover',
                                         fields=['day'],
                                         empty='none')
    reproduction_selectors = alt.Chart(data).mark_point().encode(
        alt.X("monthdate(day)", title="Tag"),
        opacity=alt.value(0),
    ).add_selection(reproduction_nearest)

    reproduction_points = chart_reproduction_rate.mark_point().encode(
        opacity=alt.condition(reproduction_nearest, alt.value(1), alt.value(
            0)))

    reproduction_text = chart_reproduction_rate.mark_text(
        align='left', dx=5, dy=5).encode(text=alt.condition(
            reproduction_nearest, 'reproduction_rate:Q', alt.value(' ')))

    rule = alt.Chart(data).mark_rule(color='gray').encode(
        alt.X("monthdate(day)",
              title="Tag"), ).transform_filter(reproduction_nearest)

    combinded_chart = alt.layer(chart_reproduction_rate,
                                reproduction_selectors, reproduction_points,
                                rule, reproduction_text).properties(width=1050,
                                                                    height=400)
    return to_json(combinded_chart)
Ejemplo n.º 13
0
def interactive_chart(df):
    nearest = alt.selection(type='single',
                            nearest=True,
                            on='mouseover',
                            fields=['week'],
                            empty='none')

    line = (alt.Chart(df).mark_line(interpolate='basis').encode(
        x='week', y='read', color='year:O'))

    selectors = (alt.Chart(df).mark_point().encode(
        x='week', opacity=alt.value(0)).add_selection(nearest))

    points = (line.mark_point().encode(
        opacity=alt.condition(nearest, alt.value(1), alt.value(0))))

    text = (line.mark_text(
        align='left', dx=5,
        dy=-5).encode(text=alt.condition(nearest, 'read', alt.value(' '))))

    rules = (alt.Chart(df).mark_rule(color='red').encode(
        x='week').transform_filter(nearest))

    chart = (alt.layer(line, selectors, points, rules,
                       text).properties(width=500,
                                        height=300,
                                        background='white',
                                        title='goodreads Challenge'))

    return chart
Ejemplo n.º 14
0
def s_avg_graph():
    df_solar_world = load_data_world_s()
    brush = alt.selection(type='interval', encodings=['x'])

    bars = alt.Chart().mark_bar().encode(
        alt.X('Year', scale=alt.Scale(zero=False)),
        y='mean(Solar_LCOE (2019 USD/kWh))',
        opacity=alt.condition(brush, alt.OpacityValue(1),
                              alt.OpacityValue(0.7)),
    ).add_selection(brush).properties(
        title='Utility-scale solar PV weighted average cost of electricity',
        width=700,
        height=350)

    line = alt.Chart().mark_rule(color='firebrick').encode(
        y='mean(Solar_LCOE (2019 USD/kWh))',
        size=alt.SizeValue(3),
        tooltip=["mean(Solar_LCOE (2019 USD/kWh))"]).transform_filter(brush)

    country = st.selectbox("Select country", [
        "Australia", "China", "France", "Germany", "India", "Italy", "Japan",
        "Netherlands", "Republic of Korea", "Spain", "Turkey", "Ukraine",
        "United Kingdom", "United States", "Vietnam"
    ])
    xyz = alt.layer(bars,
                    line,
                    data=df_solar_world[df_solar_world["Country"] == country])
    st.altair_chart(xyz)
Ejemplo n.º 15
0
def w_inst_graph():
    df_wind_world = load_data_world_w()
    brush = alt.selection(type='interval', encodings=['x'])

    bars = alt.Chart().mark_bar().encode(
        alt.X('Year', scale=alt.Scale(zero=False)),
        y='mean(Total installed costs (2019 USD/kW))',
        opacity=alt.condition(brush, alt.OpacityValue(1),
                              alt.OpacityValue(0.7)),
    ).add_selection(brush).properties(
        title='Utility-scale solar PV weighted average cost of electricity',
        width=700,
        height=350)

    line = alt.Chart().mark_rule(color='firebrick').encode(
        y='mean(Total installed costs (2019 USD/kW))',
        size=alt.SizeValue(3),
        tooltip=["mean(Total installed costs (2019 USD/kW))"
                 ]).transform_filter(brush)

    country = st.selectbox("Select country", [
        "Brazil", "Canada", "China", "Denmark", "France", "Germany", "India",
        "Italy", "Japan", "Mexico", "Spain", "Sweden", "Turkey",
        "United Kingdom", "United States"
    ])
    xyz = alt.layer(bars,
                    line,
                    data=df_wind_world[df_wind_world["Country"] == country])
    st.altair_chart(xyz)
Ejemplo n.º 16
0
def altair3(mydata):
    # basic line
    line = alt.Chart().mark_line().encode(
        x='date:T',
        y='totalPrice:Q',
        tooltip=[
            alt.Tooltip('totalPrice:Q', title='Total Price (million)'),
            alt.Tooltip('date:T', timeUnit='yearmonth', title='Date')
        ]).properties(width=400)

    # add interactive line tooltips: https://altair-viz.github.io/gallery/multiline_tooltip.html
    # Create a selection that chooses the nearest point & selects based on x-value
    nearest = alt.selection(type='single',
                            nearest=True,
                            on='mouseover',
                            fields=['date'],
                            empty='none')

    # Transparent selectors across the chart. This is what tells us the x-value of the cursor
    selectors = alt.Chart().mark_point().encode(
        x='date:T',
        opacity=alt.value(0),
    ).add_selection(nearest)

    # Draw points on the line, and highlight based on selection
    points = line.mark_point().encode(
        opacity=alt.condition(nearest, alt.value(1), alt.value(0)))

    # Draw a rule at the location of the selection
    rules = alt.Chart().mark_rule(color='gray').encode(
        x='date:T', ).transform_filter(nearest)

    # Put the layers into a chart and bind the data
    line_totalprice = alt.layer(line, selectors, points, rules, data=mydata)
    return line_totalprice
Ejemplo n.º 17
0
def batsman_vs_season(player, season):
    batsman_vs_seasons = dr.batsman_runs[dr.batsman_runs['player'] == player][
        dr.batsman_runs['season'] == int(season)]
    highlight = alt.selection(type='multi', on='mouseover',
                              fields=['match'], nearest=True)

    batsman_vs_season_base = alt.Chart(batsman_vs_seasons).encode(
        x='match:O',
        y='runs:Q',
        tooltip=['player', 'runs', 'team', 'stadium'],
    )

    batsman_vs_season_points = batsman_vs_season_base.mark_circle().encode(
        opacity=alt.condition(~highlight, alt.value(0.7), alt.value(1)),
        size=alt.condition(~highlight, alt.value(70), alt.value(140))
    ).add_selection(
        highlight,
    ).properties(
        height=300,
        width=900
    )

    batsman_vs_season_lines = batsman_vs_season_base.mark_line(point=True).encode(
        opacity=alt.condition(~highlight, alt.value(0.7), alt.value(0.7)),
        size=alt.condition(~highlight, alt.value(2), alt.value(2))
    )
    return (batsman_vs_season_points + batsman_vs_season_lines).configure_axis(
        labels=False
    )
    def selectionchart(self):
        """Chart with bottom time period selection

        Returns:
            [obj]: [altair chart object with time selection chart]
        """

        brush = alt.selection(type='interval', encodings=['x'])
        upper = self.chart.encode(
            alt.X('date:T', scale=alt.Scale(domain=brush)))
        inline = self.draw.encode(alt.X(self.target,
                                        type='temporal',
                                        title=' ',
                                        axis=alt.Axis(grid=False)),
                                  alt.Y('y',
                                        type=self.type_,
                                        scale=alt.Scale(zero=False),
                                        title=' ',
                                        axis=alt.Axis(grid=False,
                                                      labels=False)),
                                  alt.Color('показатель:N', ),
                                  opacity=alt.condition(
                                      self.leg, alt.value(1), alt.value(0.2)))
        lower = alt.layer(inline, self.rules).properties(
            width=self.width, height=20).add_selection(brush)
        return upper & lower
Ejemplo n.º 19
0
def ruled_altair_chart(source):
    line = alt.Chart(source).encode(x=alt.X('yearmonthdate(date):T',
                                            axis=alt.Axis(tickSize=0,
                                                          labelAngle=-90,
                                                          tickCount=5,
                                                          title='Date')),
                                    y=alt.Y('value', title='Count'),
                                    color='variable')
    # Create a selection that chooses the nearest point & selects based on x-value
    nearest = alt.selection(type='single',
                            nearest=True,
                            on='mouseover',
                            fields=['date'],
                            empty='none')
    # Transparent selectors across the chart. This is what tells us
    # the x-value of the cursor
    selectors = alt.Chart(source).mark_point().encode(
        x='date', opacity=alt.value(0)).add_selection(nearest)
    # Draw points on the line, and highlight based on selection
    points = line.mark_point().encode(
        opacity=alt.condition(nearest, alt.value(1), alt.value(0)))
    # Draw text labels near the points, and highlight based on selection
    text = line.mark_text(
        align='left', dx=5,
        dy=-5).encode(text=alt.condition(nearest, 'value:Q', alt.value(' ')))
    # Draw a rule at the location of the selection
    rules = alt.Chart(source).mark_rule(color='gray').encode(
        x='date', ).transform_filter(nearest)
    # Put the five layers into a chart and bind the data
    layers = alt.layer(line.mark_line(), selectors, points, text, rules)

    return layers
    def _select(self):
        """Create a selection that chooses the nearest point & selects based on x-value
        """

        nearest = alt.selection(type='single',
                                nearest=True,
                                on='mouseover',
                                fields=[self.target],
                                empty='none')

        # Selection in a legend
        self.leg = alt.selection_multi(fields=['показатель'], bind='legend')

        # Draw a chart
        self.line = self.draw.encode(alt.X(self.target,
                                           type='temporal',
                                           title=' ',
                                           axis=alt.Axis(grid=self.grid,
                                                         offset=10)),
                                     alt.Y('y',
                                           type=self.type_,
                                           title='количество',
                                           scale=alt.Scale(zero=False),
                                           axis=alt.Axis(grid=self.grid,
                                                         offset=10)),
                                     alt.Color('показатель:N',
                                               legend=self.legend),
                                     opacity=alt.condition(
                                         self.leg, alt.value(1),
                                         alt.value(0.2)))

        # Transparent selectors across the chart. This is what tells us
        # the x-value of the cursor
        self.selectors = alt.Chart(self.data).mark_point().encode(
            alt.X(self.target, type='temporal'),
            opacity=alt.value(0),
        ).add_selection(nearest)

        # Draw points on the line, and highlight based on selection
        self.points = self.line.mark_point().encode(
            opacity=alt.condition(nearest, alt.value(1), alt.value(0)))

        # Draw text labels near the points, and highlight based on selection
        self.text = self.line.mark_text(
            align='right', dx=-5, fill='#000000', fontSize=16,
            clip=False).encode(text=alt.condition(
                nearest, 'y', alt.value(''), type=self.type_))

        # Draw X value on chart
        self.x_text = self.line.mark_text(
            align="left", dx=-5, dy=15, fill='#808080',
            fontSize=16).encode(text=alt.condition(nearest,
                                                   self.target,
                                                   alt.value(''),
                                                   type='temporal',
                                                   format='%Y-%m-%d'))

        # Draw a rule at the location of the selection
        self.rules = alt.Chart(self.data).mark_rule(color='gray').encode(
            alt.X(self.target, type='temporal')).transform_filter(nearest)
Ejemplo n.º 21
0
def plot_interactive_lines(data,
                           x,
                           y,
                           hue,
                           alpha=0.2,
                           point_size=15,
                           line_size=1.5):
    """
    Use altair to plot multiple lines with interactive selection
    """
    highlight = alt.selection(type='single',
                              fields=[hue],
                              on='mouseover',
                              nearest=True,
                              bind='legend')
    selection = alt.selection_multi(fields=[hue],
                                    on='mouseover',
                                    bind='legend')
    base = alt.Chart(data).encode(
        x=x,
        y=y,
        color=hue,
        tooltip=[hue],
    )
    points = base.mark_circle().encode(
        opacity=alt.condition(selection, alt.value(1), alt.value(alpha)),
        size=alt.condition(~highlight, alt.value(point_size),
                           alt.value(point_size * 2))).add_selection(highlight)
    lines = base.mark_line().encode(
        opacity=alt.condition(selection, alt.value(1), alt.value(alpha)),
        size=alt.condition(~highlight, alt.value(line_size),
                           alt.value(line_size * 2))).add_selection(selection)
    return lines + points
Ejemplo n.º 22
0
    def data_make(self):

        click = alt.selection(type='multi', encodings=['x', 'y'])

        scatter1 = alt.Chart(self.cars).mark_point().encode(
            alt.X('Horsepower:Q',
                  scale=alt.Scale(type='log', domain=(30, 300)),
                  axis=alt.Axis(title='Horsepawer[MPa]')),
            alt.Y('Miles_per_Gallon:Q', scale=alt.Scale(domain=(0, 50))),
            color=alt.condition(click,
                                'Origin:N',
                                alt.value('lightgray'),
                                legend=None),
            tooltip=['Name:N']).properties(selection=click,
                                           title='Once a famous cars data')

        base = alt.Chart(self.cars).mark_point().encode(
            alt.X('Cylinders:N'),
            alt.Y('Origin:N'),
            color=alt.condition(
                click, 'Origin:N', alt.value('lightgray'),
                legend=None)).properties(
                    selection=click,
                    title='Data selector with [Click + Shift-key]')

        return (base | scatter1)
Ejemplo n.º 23
0
def add_ruler_as_selector_on_single_line_chart(chart: Any, df: pd.DataFrame,
                                               x_field: str,
                                               y_field: str) -> Any:
    # Create a selection that chooses the nearest point & selects based on x-value
    nearest = alt.selection(
        type="single",
        nearest=True,
        on="mouseover",
        fields=[typedef.Columns.DATE],
        empty="none",
    )

    # Transparent selectors across the chart. This is what tells us
    # the x-value of the cursor
    selectors = (alt.Chart(df).mark_point().encode(
        x=x_field,
        opacity=alt.value(0),
        tooltip=alt.Tooltip(y_field),
    ).add_selection(nearest))

    # Draw points on the line, and highlight based on selection
    points = chart.mark_point().encode(opacity=alt.condition(
        nearest, alt.value(1), alt.value(0)), )

    # # Draw text labels near the points, and highlight based on selection
    # text = chart.mark_text(align="left", dx=5, dy=-5).encode(
    #     text=alt.condition(nearest, y_field, alt.value(" "))
    # )

    # Draw a rule at the location of the selection
    rules = (alt.Chart(df).mark_rule(color="gray").encode(
        x=x_field).transform_filter(nearest))

    # Put the five layers into a chart and bind the data
    return alt.layer(chart, selectors, points, rules)
Ejemplo n.º 24
0
def combined_bar_line_plot(df, y, x):
    brush = alt.selection(type="interval", encodings=["x"])
    base = barplot(df, y, x)
    upper = base.encode(alt.X(x, scale=alt.Scale(domain=brush)))
    lower = base.mark_line().properties(height=120).add_selection(brush)
    combined = alt.vconcat(upper, lower)
    return combined
Ejemplo n.º 25
0
def state_google(state_only_input):
    to_plot = google_states[google_states.sub_region_1 == state_only_input]
    id_vars = ['date']
    value_vars = to_plot.columns[4:]
    to_plot = to_plot.melt(id_vars, value_vars, var_name = 'type', value_name = 'volume')

    highlight = alt.selection(type='single', on='mouseover',
                              fields=['type'], nearest=True)

    base = alt.Chart(to_plot).mark_line().encode(
        x = 'date:T',
        y = alt.Y('volume:Q', title = 'Relative volume'),
        color = alt.Color('type:N', title = "Destination type")
    ).properties(
        title = {'text': 'Traffic by Destination Type',
                'subtitle': 'Source: Google mobility data'},
        height = 300
    )

    points = base.mark_circle().encode(
        opacity=alt.value(0)
    ).add_selection(
        highlight
    ).properties(
        width=600
    )

    lines = base.mark_line().encode(
        size=alt.condition(~highlight, alt.value(1), alt.value(3))
    )

    return points + lines
def movie_embedding_norm(models):
    """Visualizes the norm and number of ratings of the movie embeddings.
    Args:
      model: A MFModel object.
    """
    if not isinstance(models, list):
        models = [models]
    df = pd.DataFrame({
        'title': movies['title'],
        'genre': movies['genre'],
        'num_ratings': movies_ratings['rating count'],
    })
    charts = []
    brush = alt.selection_interval()
    for i, model in enumerate(models):
        norm_key = 'norm' + str(i)
        df[norm_key] = np.linalg.norm(model.embeddings["movie_id"], axis=1)
        nearest = alt.selection(
            type='single', encodings=['x', 'y'], on='mouseover', nearest=True,
            empty='none')
        base = alt.Chart().mark_circle().encode(
            x='num_ratings',
            y=norm_key,
            color=alt.condition(brush, alt.value('#4c78a8'), alt.value('lightgray'))
        ).properties(
            selection=nearest).add_selection(brush)
        text = alt.Chart().mark_text(align='center', dx=5, dy=-5).encode(
            x='num_ratings', y=norm_key,
            text=alt.condition(nearest, 'title', alt.value('')))
        charts.append(alt.layer(base, text))
    return altair_viewer.show(alt.hconcat(*charts, data=df))
Ejemplo n.º 27
0
def line_chart(df_melted, y_axis, title):
    nearest = alt.selection(type='single',
                            nearest=True,
                            on='mouseover',
                            fields=['Year'],
                            empty='none')
    selectors = alt.Chart(df_melted).mark_point().encode(
        x='Year:Q',
        opacity=alt.value(0),
    ).add_selection(nearest)

    line = alt.Chart(df_melted).mark_line(color=color).encode(
        x=alt.X('Year:Q',
                axis=alt.Axis(tickCount=forecast_period),
                sort=list(df_melted.index)),
        y=alt.Y(y_axis),
        tooltip=[alt.Tooltip(y_axis, format=',.0%')])

    points = line.mark_point(color=color, size=40).encode(
        opacity=alt.condition(nearest, alt.value(1), alt.value(0)))

    chart = alt.layer(line, selectors,
                      points).properties(title=title,
                                         width=alt.Step(60),
                                         height=400).interactive()

    return chart
Ejemplo n.º 28
0
def tv_linkedScatterPlot(data, engine, xlabel, ylabel1, ylabel2):

    data = data.copy()
    # data['year'] = data.apply(lambda x : x.name.year, axis=1)
    data.rename(columns={
        'plotY': xlabel,
        'plotX1': ylabel1,
        'plotX2': ylabel2
    },
                inplace=True)
    interval = alt.selection(type='interval', encodings=['x', 'y'])

    base = alt.Chart(data)
    base = base.mark_point()

    lplot = base.encode(x=ylabel1,
                        y=alt.Y('{0}:Q'.format(xlabel),
                                axis=alt.Axis(format='~s')),
                        color=alt.condition(interval, 'anfreq_label',
                                            alt.value('lightgray')))
    lplot = lplot.properties(selection=interval, width=260, height=300)

    rplot = base.encode(x=ylabel2,
                        y=alt.Y('{0}:Q'.format(xlabel),
                                title='',
                                axis=alt.Axis(labels=False)),
                        color=alt.condition(interval, 'anfreq_label',
                                            alt.value('lightgray')))
    rplot = rplot.properties(selection=interval, width=260, height=300)

    p = alt.hconcat(lplot, rplot, spacing=0)

    return p
Ejemplo n.º 29
0
def airport_chart(source: alt.Chart, subset: List[str], name: str) -> alt.Chart:

    chart = source.transform_filter(
        alt.FieldOneOfPredicate(field="airport", oneOf=subset)
    )

    highlight = alt.selection(
        type="single", nearest=True, on="mouseover", fields=["airport"]
    )

    points = (
        chart.mark_point()
        .encode(
            x="day",
            y=alt.Y("count", title="# of departing flights"),
            color=alt.Color("airport", legend=alt.Legend(title=name)),
            tooltip=["day", "airport", "city", "count"],
            opacity=alt.value(0.5),
        )
        .add_selection(highlight)
    )

    lines = (
        chart.mark_line()
        .encode(
            x="day",
            y="count",
            color="airport",
            size=alt.condition(~highlight, alt.value(1), alt.value(3)),
        )
        .transform_loess("day", "count", groupby=["airport"], bandwidth=0.2)
    )

    return lines + points
Ejemplo n.º 30
0
def plot_both(county='alle_fylker', start=False, end=False, range='day'):
    data = fetch_data(county, start, end, range)
    if range == 'day':
        dato = 'Prøvetakingsdato:T'
    else:
        dato = 'Dato:T'

    cum = 'Kumulativt antall:Q'
    new = 'Nye tilfeller:Q'
    nearest = alt.selection(type='single',
                            nearest=True,
                            on='mouseover',
                            fields=['Prøvetakingsdato'])

    base = alt.Chart(data).encode(x=dato,
                                  tooltip=[
                                      alt.Tooltip(dato, title='dato'),
                                      alt.Tooltip(new, title='nye tilfeller'),
                                      alt.Tooltip(
                                          cum, title='kumulative tilfeller'),
                                  ]).mark_bar().encode(y=new)
    line = base.mark_line(color='red').encode(y=cum, tooltip=[cum])
    final = alt.layer(base, line).resolve_scale(y='independent').interactive()

    return final
Ejemplo n.º 31
0
"""
Interactive Chart with Cross-Highlight
======================================
This example shows an interactive chart where selections in one portion of
the chart affect what is shown in other panels. Click on the bar chart to
see a detail of the distribution in the upper panel.
"""
# category: interactive charts
import altair as alt
from vega_datasets import data

source = data.movies.url

pts = alt.selection(type="single", encodings=['x'])

rect = alt.Chart(data.movies.url).mark_rect().encode(
    alt.X('IMDB_Rating:Q', bin=True),
    alt.Y('Rotten_Tomatoes_Rating:Q', bin=True),
    alt.Color('count()',
        scale=alt.Scale(scheme='greenblue'),
        legend=alt.Legend(title='Total Records')
    )
)

circ = rect.mark_point().encode(
    alt.ColorValue('grey'),
    alt.Size('count()',
        legend=alt.Legend(title='Records in Selection')
    )
).transform_filter(
    pts
Ejemplo n.º 32
0
"""
Selection Histogram
===================
This chart shows an example of using an interval selection to filter the
contents of an attached histogram, allowing the user to see the proportion
of items in each category within the selection.
"""
# category: interactive charts
import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection(type='interval')

points = alt.Chart().mark_point().encode(
    x='Horsepower:Q',
    y='Miles_per_Gallon:Q',
    color=alt.condition(brush, 'Origin:N', alt.value('lightgray'))
).add_selection(
    brush
)

bars = alt.Chart().mark_bar().encode(
    y='Origin:N',
    color='Origin:N',
    x='count(Origin):Q'
).transform_filter(
    brush
)
Ejemplo n.º 33
0
"""
Multi-panel Scatter Plot with Linked Brushing
---------------------------------------------
This is an example of using an interval selection to control the color of
points across multiple panels.
"""
# category: interactive charts
import altair as alt
from vega_datasets import data

source = data.cars()

brush = alt.selection(type='interval', resolve='global')

base = alt.Chart(source).mark_point().encode(
    y='Miles_per_Gallon',
    color=alt.condition(brush, 'Origin', alt.ColorValue('gray'))
).add_selection(
    brush
).properties(
    width=250,
    height=250
)

base.encode(x='Horsepower') | base.encode(x='Acceleration')
Ejemplo n.º 34
0
"""
Multi-Line Highlight
====================
This multi-line chart uses an invisible Voronoi tessellation to handle mouseover to
identify the nearest point and then highlight the line on which the point falls.
It is adapted from the Vega-Lite example found at
https://bl.ocks.org/amitkaps/fe4238e716db53930b2f1a70d3401701
"""
# category: interactive charts
import altair as alt
from vega_datasets import data

source = data.stocks()

highlight = alt.selection(type='single', on='mouseover',
                          fields=['symbol'], nearest=True)

base = alt.Chart(source).encode(
    x='date:T',
    y='price:Q',
    color='symbol:N'
)

points = base.mark_circle().encode(
    opacity=alt.value(0)
).add_selection(
    highlight
).properties(
    width=600
)
Interactive Crossfilter
=======================
This example shows a multi-panel view of the same data, where you can interactively
select a portion of the data in any of the panels to highlight that portion in any
of the other panels.
"""
# category: interactive charts
import altair as alt
from vega_datasets import data

source = alt.UrlData(
    data.flights_2k.url,
    format={'parse': {'date': 'date'}}
)

brush = alt.selection(type='interval', encodings=['x'])

# Define the base chart, with the common parts of the
# background and highlights
base = alt.Chart().mark_bar().encode(
    x=alt.X(alt.repeat('column'), type='quantitative', bin=alt.Bin(maxbins=20)),
    y='count()'
).properties(
    width=180,
    height=130
)

# blue background with selection
background = base.properties(selection=brush)

# yellow highlights on the transformed data
Ejemplo n.º 36
0
states = alt.topo_feature(data.us_10m.url, 'states')
capitals = data.us_state_capitals.url

# US states background
background = alt.Chart(states).mark_geoshape(
    fill='lightgray',
    stroke='white'
).properties(
    title='US State Capitols',
    width=700,
    height=400
).project('albersUsa')

# Points and text
hover = alt.selection(type='single', on='mouseover', nearest=True,
                      fields=['lat', 'lon'])

base = alt.Chart(capitals).encode(
    longitude='lon:Q',
    latitude='lat:Q'
)

text = base.mark_text(dy=-5, align='right').encode(
    alt.Text('city', type='nominal'),
    opacity=alt.condition(~hover, alt.value(0), alt.value(1))
)

points = base.mark_point().encode(
    color=alt.value('black'),
    size=alt.condition(~hover, alt.value(30), alt.value(100))
).add_selection(hover)
Ejemplo n.º 37
0
The following example employs a little trick to isolate the x-position of the
cursor: we add some transparent points with only an x encoding (no y encoding)
and tie a *nearest* selection to these, tied to the "x" field.
"""
# category: interactive charts
import altair as alt
import pandas as pd
import numpy as np

np.random.seed(42)
source = pd.DataFrame(np.cumsum(np.random.randn(100, 3), 0).round(2),
                    columns=['A', 'B', 'C'], index=pd.RangeIndex(100, name='x'))
source = source.reset_index().melt('x', var_name='category', value_name='y')

# Create a selection that chooses the nearest point & selects based on x-value
nearest = alt.selection(type='single', nearest=True, on='mouseover',
                        fields=['x'], empty='none')

# The basic line
line = alt.Chart().mark_line(interpolate='basis').encode(
    x='x:Q',
    y='y:Q',
    color='category:N'
)

# Transparent selectors across the chart. This is what tells us
# the x-value of the cursor
selectors = alt.Chart().mark_point().encode(
    x='x:Q',
    opacity=alt.value(0),
).add_selection(
    nearest
Ejemplo n.º 38
0
"""
# category: interactive charts

import altair as alt
import pandas as pd
import numpy as np

x = np.random.normal(size=100)
y = np.random.normal(size=100)

m = np.random.normal(15, 1, size=100)

source = pd.DataFrame({"x": x, "y":y, "m":m})

# interval selection in the scatter plot
pts = alt.selection(type="interval", encodings=["x"])

# left panel: scatter plot
points = alt.Chart().mark_point(filled=True, color="black").encode(
    x='x',
    y='y'
).transform_filter(
    pts.ref()
).properties(
    width=300,
    height=300
)

# right panel: histogram
mag = alt.Chart().mark_bar().encode(
    x='mbin:N',