Ejemplo n.º 1
0
        'NormalPredictor': '[{}]({})'.format('Random',
                                             stable +
                                             'basic_algorithms.html#amaze.prediction_algorithms.random_pred.NormalPredictor'),
        'ml-100k': '[{}]({})'.format('Movielens 100k',
                                     'http://grouplens.org/datasets/movielens/100k'),
        'ml-1m': '[{}]({})'.format('Movielens 1M',
                                   'http://grouplens.org/datasets/movielens/1m'),
        }


# set RNG
np.random.seed(0)
random.seed(0)

dataset = 'ml-1m'
data = Dataset.load_builtin(dataset)
kf = KFold(random_state=0)  # folds will be the same for all algorithms.

table = []
for klass in classes:
    start = time.time()
    out = cross_validate(klass(), data, ['rmse', 'mae'], kf)
    cv_time = str(datetime.timedelta(seconds=int(time.time() - start)))
    link = LINK[klass.__name__]
    mean_rmse = '{:.3f}'.format(np.mean(out['test_rmse']))
    mean_mae = '{:.3f}'.format(np.mean(out['test_mae']))

    new_line = [link, mean_rmse, mean_mae, cv_time]
    print(tabulate([new_line], tablefmt="pipe"))  # print current algo perf
    table.append(new_line)
Ejemplo n.º 2
0
"""
This module gives an example of how to configure similarity measures
computation.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from amaze import KNNBasic
from amaze import Dataset
from amaze.model_selection import cross_validate

# Load the movielens-100k dataset.
data = Dataset.load_builtin('ml-100k')

# Example using cosine similarity
sim_options = {
    'name': 'cosine',
    'user_based': False  # compute  similarities between items
}
algo = KNNBasic(sim_options=sim_options)

cross_validate(algo, data, verbose=True)

# Example using pearson_baseline similarity
sim_options = {
    'name': 'pearson_baseline',
    'shrinkage': 0  # no shrinkage
}
algo = KNNBasic(sim_options=sim_options)