Ejemplo n.º 1
0
    def __init__(self, sess, network_params):

        self._sess = sess

        self._params = network_params

        self._device = self._params['device']

        self._tf_sumry_wrtr = None

        if network_params['write_summary']:
            if 'summary_dir' in network_params:
                summary_dir = network_params['summary_dir']
            else:
                summary_dir = None
            self._tf_sumry_wrtr = TfSummaryWriter(tf_session=sess,
                                                  summary_dir=summary_dir)

        with tf.device(self._device):

            if self._params['write_summary']:
                tf.global_variables_initializer().run()

            self._mdn = MixtureDensityNetwork(
                network_params, tf_sumry_wrtr=self._tf_sumry_wrtr)

            self._mdn._init_model()
            self._net_ops = self._mdn._ops

            self._init_op = tf.global_variables_initializer()

            self._saver = tf.train.Saver()
Ejemplo n.º 2
0
    def __init__(self, sess, network_params):

        self._sess = sess

        self._params = network_params

        self._device = self._params['device']

        self._tf_sumry_wrtr = None

        self._optimiser = network_params['optimiser']

        self._data_configured = False

        if network_params['write_summary']:
            if 'summary_dir' in network_params:
                summary_dir = network_params['summary_dir']
            else:
                summary_dir = None
            
            self._tf_sumry_wrtr = TfSummaryWriter(tf_session=sess,summary_dir=summary_dir)
            cuda_path = '/usr/local/cuda/extras/CUPTI/lib64'

            curr_ld_path = os.environ["LD_LIBRARY_PATH"]

            if not cuda_path in curr_ld_path.split(os.pathsep):
                print "Enviroment variable LD_LIBRARY_PATH does not contain %s"%cuda_path
                print "Please add it, else the program will crash!"
                raw_input("Press Ctrl+C")
                # os.environ["LD_LIBRARY_PATH"] = curr_ld_path + ':'+cuda_path

        with tf.device(self._device):
            self._net_ops = tf_model(dim_input=network_params['dim_input'],
                                     dim_output=network_params['dim_output'],
                                     loss_type='quadratic',
                                     cnn_params=network_params['cnn_params'], 
                                     fc_params=network_params['fc_params'],
                                     optimiser_params=network_params['optimiser'],
                                     tf_sumry_wrtr=self._tf_sumry_wrtr)

            self._init_op = tf.initialize_all_variables()

            self._saver = tf.train.Saver()
Ejemplo n.º 3
0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

import tensorflow as tf
from aml_dl.utilities.tf_summary_writer import TfSummaryWriter
from tensorflow.examples.tutorials.mnist import input_data

FLAGS = None

sess = tf.InteractiveSession()
tf_sum_wrtr = TfSummaryWriter(tf_session=sess)


def train():
    # Import data
    mnist = input_data.read_data_sets(FLAGS.data_dir,
                                      one_hot=True,
                                      fake_data=FLAGS.fake_data)
    # Create a multilayer model.

    # Input placeholders
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

    with tf.name_scope('input_reshape'):
Ejemplo n.º 4
0
class MDN(object):
    def __init__(self, sess, network_params):

        self._sess = sess

        self._params = network_params

        self._device = self._params['device']

        self._tf_sumry_wrtr = None

        if network_params['write_summary']:
            if 'summary_dir' in network_params:
                summary_dir = network_params['summary_dir']
            else:
                summary_dir = None
            self._tf_sumry_wrtr = TfSummaryWriter(tf_session=sess,
                                                  summary_dir=summary_dir)

        with tf.device(self._device):

            if self._params['write_summary']:
                tf.global_variables_initializer().run()

            self._mdn = MixtureDensityNetwork(
                network_params, tf_sumry_wrtr=self._tf_sumry_wrtr)

            self._mdn._init_model()
            self._net_ops = self._mdn._ops

            self._init_op = tf.global_variables_initializer()

            self._saver = tf.train.Saver()

    def init_model(self):

        with tf.device(self._device):
            self._sess.run(self._init_op)

            if self._params['load_saved_model']:
                self.load_model()

    # def load_model(self):
    #     load_tf_check_point(session=self._sess, filename=self.get_model_path())

    def save_model(self, path):
        save_path = self._saver.save(self._sess, path)
        print("Model saved in file: %s" % save_path)

    def train(self, x_data, y_data, iterations=10000):
        with tf.device(self._device):
            # Keeping track of loss progress as we train
            loss = np.zeros(iterations)

            train_op = self._net_ops['train']
            loss_op = self._net_ops['loss']

            for i in range(iterations):

                if self._params['write_summary']:
                    run_options = tf.RunOptions(
                        trace_level=tf.RunOptions.FULL_TRACE)
                    run_metadata = tf.RunMetadata()
                    summary, loss[i] = self._sess.run(
                        fetches=[self._tf_sumry_wrtr._merged, train_op],
                        feed_dict={
                            self._net_ops['x']: x_data,
                            self._net_ops['y']: y_data
                        },
                        options=run_options,
                        run_metadata=run_metadata)
                    self._tf_sumry_wrtr.add_run_metadata(metadata=run_metadata,
                                                         itr=i)
                    self._tf_sumry_wrtr.add_summary(summary=summary, itr=i)
                else:
                    _, loss[i] = self._sess.run([train_op, loss_op],
                                                feed_dict={
                                                    self._net_ops['x']: x_data,
                                                    self._net_ops['y']: y_data
                                                })

            if self._tf_sumry_wrtr is not None:
                self._tf_sumry_wrtr.close_writer()
            return loss

    # TODO: Fix
    def sample_out(self, x_input, m_samples=10):

        with tf.device(self._device):
            out_pi, out_mu, out_sigma = self._sess.run(
                [
                    self._net_ops['pi'], self._net_ops['mu'],
                    self._net_ops['sigma']
                ],
                feed_dict={self._net_ops['x']: x_input})

            samples = self._generate_mixture_samples(out_pi, out_mu, out_sigma,
                                                     m_samples)

            return samples

    # TODO: Fix
    def sample_out_max_pi(self, x_input, m_samples=10):

        with tf.device(self._device):
            out_pi, out_mu, out_sigma = self._sess.run(
                [
                    self._net_ops['pi'], self._net_ops['mu'],
                    self._net_ops['sigma']
                ],
                feed_dict={self._net_ops['x']: x_input})

            samples = self._generate_mixture_samples_from_max_pi(
                out_pi, out_mu, out_sigma, m_samples)

            return samples

    # TODO: Fix
    def expected_out(self, x_input, m_samples=10):
        with tf.device(self._device):
            samples = self.sample_out(x_input, m_samples)[0]

            return np.mean(samples)

    # TODO: Fix
    def expected_out2(self, x_input, m_samples=10):
        with tf.device(self._device):
            samples = self.sample_out(x_input, m_samples)[0]

            out = np.zeros(2)

            for i in range(m_samples):
                out += np.array([np.cos(samples[i]), np.sin(samples[i])])

            out /= m_samples

            out /= np.linalg.norm(out)

            return out

    # TODO: Fix
    def expected_max_pi_out(self, x_input, m_samples=10):
        with tf.device(self._device):
            samples = self.sample_out_max_pi(x_input, m_samples)[0]

            return np.mean(samples)

    # TODO: Fix
    def expected_max_pi_out2(self, x_input, m_samples=10):
        with tf.device(self._device):
            samples = self.sample_out_max_pi(x_input, m_samples)[0]

            out = np.zeros(2)

            for i in range(m_samples):
                out += np.array([np.cos(samples[i]), np.sin(samples[i])])

            out /= m_samples

            out /= np.linalg.norm(out)

            return out

    def run_op(self, op_name, x_input):
        with tf.device(self._device):
            op = self._net_ops[op_name]

            out = self._sess.run(op, feed_dict={self._net_ops['x']: x_input})

            return out

    def forward(self, xs):

        out = self._mdn.forward(self._sess, xs)

        return out

    def predict(self, xs):

        out = self._mdn.predict(self._sess, xs)

        return out

    def _sample_pi_idx(self, x, pdf):
        N = pdf.size
        acc = 0
        for i in range(0, N):
            acc += pdf[i]
            if (acc >= x):
                return i

        print 'failed to sample mixture weight index'
        return -1

    def _max_pi_idx(self, pdf):

        i = np.argmax(pdf, axis=1)

        return i

    # TODO: Fix
    def _sample_gaussian(self, rn, mu, std):

        return mu + rn * std

    # TODO: Fix
    def _generate_mixture_samples_from_max_pi(self,
                                              out_pi,
                                              out_mu,
                                              out_sigma,
                                              m_samples=10):

        # Number of test inputs
        N = out_mu.shape[0]
        D = out_mu.shape[1]  # mean dimension
        M = m_samples

        result = np.random.rand(N, D, M)  # initially random [0, 1]
        rn = np.random.randn(N, D, M)  # normal random matrix (0.0, 1.0)

        # Generates M samples from the mixture for each test input
        for j in range(M):
            for i in range(0, N):
                idx = self._max_pi_idx(out_pi[i])
                mu = out_mu[i, idx]
                std = out_sigma[i, idx]
                result[i, :, j] = self._sample_gaussian(rn[i, :, j], mu, std)

        return result

    # TODO: Fix
    def _generate_mixture_samples(self,
                                  out_pi,
                                  out_mu,
                                  out_sigma,
                                  m_samples=10):

        # Number of test inputs
        N = out_mu.shape[0]
        D = out_mu.shape[1]  # mean dimension
        M = m_samples

        result = np.random.rand(N, D, M)  # initially random [0, 1]
        rn = np.random.randn(N, D, M)  # normal random matrix (0.0, 1.0)

        # Generates M samples from the mixture for each test input
        for j in range(M):
            for i in range(0, N):
                idx = self._sample_pi_idx(np.random.rand(1)[0], out_pi[i])
                mu = out_mu[i, :, idx]
                std = out_sigma[i, idx]
                result[i, :, j] = self._sample_gaussian(rn[i, :, j], mu, std)

        return result
Ejemplo n.º 5
0
class NNPushFwdModel(object):

    def __init__(self, sess, network_params):

        self._sess = sess

        self._params = network_params

        self._device = self._params['device']

        self._tf_sumry_wrtr = None

        self._optimiser = network_params['optimiser']

        self._data_configured = False

        if network_params['write_summary']:
            if 'summary_dir' in network_params:
                summary_dir = network_params['summary_dir']
            else:
                summary_dir = None
            
            self._tf_sumry_wrtr = TfSummaryWriter(tf_session=sess,summary_dir=summary_dir)
            cuda_path = '/usr/local/cuda/extras/CUPTI/lib64'

            curr_ld_path = os.environ["LD_LIBRARY_PATH"]

            if not cuda_path in curr_ld_path.split(os.pathsep):
                print "Enviroment variable LD_LIBRARY_PATH does not contain %s"%cuda_path
                print "Please add it, else the program will crash!"
                raw_input("Press Ctrl+C")
                # os.environ["LD_LIBRARY_PATH"] = curr_ld_path + ':'+cuda_path

        with tf.device(self._device):
            self._net_ops = tf_model(dim_input=network_params['dim_input'],
                                     dim_output=network_params['dim_output'],
                                     loss_type='quadratic',
                                     cnn_params=network_params['cnn_params'], 
                                     fc_params=network_params['fc_params'],
                                     optimiser_params=network_params['optimiser'],
                                     tf_sumry_wrtr=self._tf_sumry_wrtr)

            self._init_op = tf.initialize_all_variables()

            self._saver = tf.train.Saver()

    def init_model(self):

        with tf.device(self._device):
            self._sess.run(self._init_op)

            if self._params['load_saved_model']:
                self.load_model()

    def configure_data(self, data_x, data_y, batch_creator):
        self._data_x = data_x
        self._data_y = data_y
        self._batch_creator = batch_creator
        self._data_configured = True

    def get_model_path(self):
        if 'model_dir' in self._params:
            model_dir = self._params['model_dir']
        else:
            model_path = './fwd/'

        if not os.path.exists(model_dir):
            os.makedirs(model_dir)

        if 'model_name' in self._params:
            model_name = self._params['model_name']
        else:
            model_name = 'fwd_model.ckpt'

        return model_dir+model_name


    def load_model(self):
        load_tf_check_point(session=self._sess, filename=self.get_model_path())

    def save_model(self):
        save_path = self._saver.save(self._sess, self.get_model_path())
        print("Model saved in file: %s" % save_path)


    def get_data(self):
        round_complete = None 
        if self._params['batch_params'] is not None:
            if self._batch_creator is not None:
                self._data_x, self._data_y, round_complete = self._batch_creator.get_batch(random_samples=self._params['batch_params']['use_random_batches'])
            else:
                raise Exception("Batch training chosen but batch_creator not configured")

        if self._params['cnn_params'] is None:
            feed_dict = {self._net_ops['x']:self._data_x, self._net_ops['y']:self._data_y}
        else:
            feed_dict = {self._net_ops['image_input']:self._data_x, self._net_ops['y']:self._data_y}
        
        return feed_dict, round_complete

    def train(self, epochs):

        if not self._data_configured:
            raise Exception("Data not configured, please configure..")
        
        if self._params['write_summary']:
            tf.global_variables_initializer().run()
        
        loss = np.zeros(epochs)
        
        feed_dict, _ = self.get_data()

        if self._tf_sumry_wrtr is not None:

            for i in range(epochs):

                print "Starting epoch \t", i
                round_complete = False

                while not round_complete:

                    if self._params['batch_params'] is not None:
                        feed_dict, round_complete = self.get_data()
                    else:
                        #this is to take care of the case when we are not doing batch training.
                        round_complete = True

                    if round_complete:
                        print "Completed round"
    
                    if i % 100 == 99:  # Record execution stats
                        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                        run_metadata = tf.RunMetadata()
                        summary, loss[i] = self._sess.run(fetches=[self._tf_sumry_wrtr._merged, self._net_ops['train_step']],
                                                    feed_dict=feed_dict,
                                                    options=run_options,
                                                    run_metadata=run_metadata)
                        
                        self._tf_sumry_wrtr.add_run_metadata(metadata=run_metadata, itr=i)
                        self._tf_sumry_wrtr.add_summary(summary=summary, itr=i)
                        print('Adding run metadata for', i)
                    else:  # Record a summary
                        summary, loss[i] = self._sess.run(fetches=[self._tf_sumry_wrtr._merged, self._net_ops['train_step']], 
                                                    feed_dict=feed_dict)
                        self._tf_sumry_wrtr.add_summary(summary=summary, itr=i)
           
            self._tf_sumry_wrtr.close_writer()

        else:
            with tf.device(self._device):
                # Keeping track of loss progress as we train
                train_step = self._net_ops['train_step']
                loss_op  = self._net_ops['cost']

                for i in range(epochs):
                  _, loss[i] = self._sess.run([train_step, loss_op], feed_dict=feed_dict)
  
        return loss

    def run_op(self, op_name, x_input):
        with tf.device(self._device):
            op = self._net_ops[op_name]

            out = self._sess.run(op, feed_dict={self._net_ops['x']: x_input})

            return out
Ejemplo n.º 6
0
class MDNPushFwdModel(object):
    def __init__(self, sess, network_params):

        self._sess = sess

        self._params = network_params

        self._device = self._params['device']

        self._tf_sumry_wrtr = None

        self._optimiser = network_params['optimiser']

        self._data_configured = False

        if network_params['write_summary']:
            if 'summary_dir' in network_params:
                summary_dir = network_params['summary_dir']
            else:
                summary_dir = None

            self._tf_sumry_wrtr = TfSummaryWriter(tf_session=sess,
                                                  summary_dir=summary_dir)
            cuda_path = '/usr/local/cuda/extras/CUPTI/lib64'

            curr_ld_path = os.environ["LD_LIBRARY_PATH"]

            if not cuda_path in curr_ld_path.split(os.pathsep):
                print "Enviroment variable LD_LIBRARY_PATH does not contain %s" % cuda_path
                print "Please add it, else the program will crash!"
                raw_input("Press Ctrl+C")
                # os.environ["LD_LIBRARY_PATH"] = curr_ld_path + ':'+cuda_path

        with tf.device(self._device):

            self._mdn = MixtureDensityNetwork(
                network_params, tf_sumry_wrtr=self._tf_sumry_wrtr)

            self._mdn._init_model()
            self._net_ops = self._mdn._ops

            self._init_op = tf.initialize_all_variables()

            self._saver = tf.train.Saver()

    def init_model(self):

        with tf.device(self._device):
            self._sess.run(self._init_op)

            if self._params['load_saved_model']:
                self.load_model()

    def configure_data(self, data_x, data_y, batch_creator):
        self._data_x = data_x
        self._data_y = data_y
        self._batch_creator = batch_creator
        self._data_configured = True

    def get_model_path(self, subscript=None):

        model_name_subscript = '_'

        if subscript is not None:
            if not isinstance(subscript, str):
                subscript = str(subscript)
            model_name_subscript = subscript + '_'

        if 'model_dir' in self._params:
            model_dir = self._params['model_dir']
        else:
            model_path = './siam/'

        if not os.path.exists(model_dir):
            os.makedirs(model_dir)

        if 'model_name' in self._params:
            model_name = model_name_subscript + self._params['model_name']
        else:
            model_name = model_name_subscript + 'siam_model.ckpt'

        return model_dir + model_name

    def load_model(self, epoch=None):
        '''
        question: is it better to give filename directly or give epoch number?
        '''
        load_tf_check_point(session=self._sess,
                            filename=self.get_model_path(epoch))

    def save_model(self, epoch=None):
        save_path = self._saver.save(self._sess, self.get_model_path(epoch))
        print("Model saved in file: %s" % save_path)

    def get_data(self):
        round_complete = None
        if self._params['batch_params'] is not None:
            if self._batch_creator is not None:
                self._data_x, self._data_y, round_complete = self._batch_creator.get_batch(
                    random_samples=self._params['batch_params']
                    ['use_random_batches'])
            else:
                raise Exception(
                    "Batch training chosen but batch_creator not configured")

        if self._params['cnn_params'] is None:

            feed_dict = {
                self._net_ops['x']: self._data_x,
                self._net_ops['y']: self._data_y
            }
        else:
            feed_dict = {
                self._net_ops['image_input']: self._data_x,
                self._net_ops['y']: self._data_y
            }

        return feed_dict, round_complete

    def train(self, epochs, chk_pnt_save_invl=10):

        if not self._data_configured:
            raise Exception("Data not configured, please configure..")

        if self._params['write_summary']:
            tf.global_variables_initializer().run()

        loss = np.zeros(epochs)

        feed_dict, _ = self.get_data()

        if self._tf_sumry_wrtr is not None:

            for i in range(epochs):

                print "Starting epoch \t", i
                round_complete = False

                while not round_complete:

                    if self._params['batch_params'] is not None:
                        feed_dict, round_complete = self.get_data()
                    else:
                        #this is to take care of the case when we are not doing batch training.
                        round_complete = True

                    if round_complete:
                        print "Completed round"

                    if i % 100 == 99:  # Record execution stats
                        run_options = tf.RunOptions(
                            trace_level=tf.RunOptions.FULL_TRACE)
                        run_metadata = tf.RunMetadata()
                        summary, loss[i] = self._sess.run(
                            fetches=[
                                self._tf_sumry_wrtr._merged,
                                self._net_ops['train']
                            ],
                            feed_dict=feed_dict,
                            options=run_options,
                            run_metadata=run_metadata)

                        self._tf_sumry_wrtr.add_run_metadata(
                            metadata=run_metadata, itr=i)
                        self._tf_sumry_wrtr.add_summary(summary=summary, itr=i)
                        print('Adding run metadata for', i)
                    else:  # Record a summary
                        summary, loss[i] = self._sess.run(fetches=[
                            self._tf_sumry_wrtr._merged, self._net_ops['train']
                        ],
                                                          feed_dict=feed_dict)
                        self._tf_sumry_wrtr.add_summary(summary=summary, itr=i)

            self._tf_sumry_wrtr.close_writer()

        else:
            with tf.device(self._device):
                # Keeping track of loss progress as we train
                train_step = self._net_ops['train']
                loss_op = self._net_ops['loss']

                for i in range(epochs):
                    print "Starting epoch \t", i
                    round_complete = False
                    batch_no = 0
                    while not round_complete:
                        if self._params['batch_params'] is not None:
                            feed_dict, round_complete = self.get_data()
                        else:
                            #this is to take care of the case when we are not doing batch training.
                            round_complete = True

                        print "Batch number \t", batch_no
                        batch_no += 1
                        _, loss[i] = self._sess.run([train_step, loss_op],
                                                    feed_dict=feed_dict)

                        if round_complete:
                            print "That was the last round of epoch %d" % i

                    if i % chk_pnt_save_invl == 0 and i != 0:
                        self.save_model(epoch=i)

                np.savetxt('loss_values.txt', np.asarray(loss))
                plt.figure()
                plt.plot(loss)
                plt.show()

        return loss

    def run_op(self, op_name, x_input):
        with tf.device(self._device):
            op = self._net_ops[op_name]

            out = self._sess.run(op, feed_dict={self._net_ops['x']: x_input})

            return out