def train_data(images, setup_only=False):
    label = 'nodeplot_test/calc'
    train_images = images

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=(5, 5)),
               label=label,
               cores=1)
    loss = LossFunction(convergence={'energy_rmse': 0.02,
                                     'force_rmse': 0.02})
    calc.model.lossfunction = loss

    if not setup_only:
        calc.train(images=train_images, )
        for image in train_images:
            print "energy =", calc.get_potential_energy(image)
            print "forces =", calc.get_forces(image)
    else:
        images = hash_images(train_images)
        calc.descriptor.calculate_fingerprints(images=images,
                                               log=calc.log,
                                               cores=1,
                                               calculate_derivatives=False)
        calc.model.fit(trainingimages=images,
                       descriptor=calc.descriptor,
                       log=calc.log,
                       cores=1,
                       only_setup=True)
        return calc
Ejemplo n.º 2
0
def test_gaussian():
    label = 'noforce_test'
    if not os.path.exists(label):
        os.mkdir(label)

    print('Generating data.')
    images = generate_data(10)

    print('Training Gaussian-neural network.')
    calc = Amp(descriptor=Gaussian(),
               label=os.path.join(label, 'Gaussian'),
               regression=NeuralNetwork(hiddenlayers=(5, 5)))

    calc.train(images, force_goal=None)
Ejemplo n.º 3
0
def calc_train_images(images, HL, E_conv, f_conv, f_coeff, ncore):
    Hidden_Layer=tuple(HL)
    print("Hidden Layer: {}".format(Hidden_Layer))
    print("Energy convergence: {}".format(E_conv))
    cores={'localhost':ncore}   # 'localhost' depress SSH, communication between nodes
    calc = Amp(descriptor=Gaussian(), model=NeuralNetwork(hiddenlayers=Hidden_Layer), cores=cores)
    if f_conv <= 0.0:
        convergence={'energy_rmse': E_conv}
    else:
        convergence={'energy_rmse': E_conv, 'force_rmse':f_conv}
    calc.model.lossfunction = LossFunction(convergence=convergence, force_coefficient=f_coeff)
        
    #calc.model.lossfunction = LossFunction(force_coefficient=-0.1)
    calc.train(images=images, overwrite=True)
    return
def train_test():
    label = 'train_test/calc'
    train_images = generate_data(2)

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=(3, 3)),
               label=label,
               cores=1)
    loss = LossFunction(convergence={'energy_rmse': 0.02,
                                     'force_rmse': 0.02})
    calc.model.lossfunction = loss

    calc.train(images=train_images,)
    for image in train_images:
        print "energy =", calc.get_potential_energy(image)
        print "forces =", calc.get_forces(image)
Ejemplo n.º 5
0
def test():
    "FingerprintPlot test."""
    generate_data(2, filename='fpplot-training.traj')

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(),
               label='fpplot-test'
               )
    calc.model.lossfunction = LossFunction(convergence={'energy_rmse': 1.00,
                                                        'force_rmse': 1.00})
    calc.train(images='fpplot-training.traj')

    images = ase.io.Trajectory('fpplot-training.traj')
    fpplot = FingerprintPlot(calc)
    fpplot(images)
    fpplot(images, overlay=images[0])
    fpplot(images, overlay=[images[1][2], images[0][-1]])
Ejemplo n.º 6
0
def calc_train_images(images, HL, E_conv, f_conv, ncore):
    Hidden_Layer = tuple(HL)
    print("Hidden Layer: {}".format(Hidden_Layer))
    print("Energy convergence: {}".format(E_conv))
    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=Hidden_Layer),
               cores=ncore)
    if f_conv <= 0.0:
        calc.model.lossfunction = LossFunction(
            convergence={'energy_rmse': E_conv})
    else:
        calc.model.lossfunction = LossFunction(convergence={
            'energy_rmse': E_conv,
            'force_rmse': f_conv
        })

    #calc.model.lossfunction = LossFunction(force_coefficient=-0.1)
    calc.train(images=images, overwrite=True)
    return
Ejemplo n.º 7
0
def test_none():
    label = 'force_test'
    if not os.path.exists(label):
        os.mkdir(label)

    print('Generating data.')
    all_images = generate_data(4)
    train_images, test_images = randomize_images(all_images)

    print('Training none-neural network.')
    calc1 = Amp(descriptor=None,
                label=os.path.join(label, 'none'),
                regression=NeuralNetwork(hiddenlayers=(5, 5)))
    calc1.train(train_images,
                energy_goal=0.01,
                force_goal=0.05,
                global_search=None)

    print('Testing none-neural network.')
    energies1 = []
    for image in all_images:
        energies1.append(calc1.get_potential_energy(atoms=image))

    print('Verify making new calc works.')
    params = calc1.todict()
    calc2 = Amp(**params)
    energies2 = []
    for image in all_images:
        energies2.append(calc2.get_potential_energy(atoms=image))
    assert energies1 == energies2

    print('Verifying can move an atom and get new energy.')
    image = all_images[0]
    image.set_calculator(calc2)
    e1 = image.get_potential_energy(apply_constraint=False)
    f1 = image.get_forces(apply_constraint=False)
    image[0].x += 0.5  # perturb
    e2 = image.get_potential_energy(apply_constraint=False)
    f2 = image.get_forces(apply_constraint=False)
    assert e1 != e2
    assert not (f1 == f2).all()
Ejemplo n.º 8
0
def calc_train_images(images, HL, E_conv, f_conv, f_coeff, ncore, amp_pot=None):
    Hidden_Layer=tuple(HL)
    print("Hidden Layer: {}".format(Hidden_Layer))
    print("Energy convergence: {}".format(E_conv))
    cores={'localhost':ncore}   # 'localhost' depress SSH, communication between nodes
    ### load "amp.amp"
    if amp_pot:
        calc = Amp.load(amp_pot)
    calc = Amp(descriptor=Gaussian(), model=NeuralNetwork(hiddenlayers=Hidden_Layer), cores=cores)
    ### Global Search in Param Space
    Annealer(calc=calc, images=images, Tmax=20, Tmin=1, steps=4000)

    if f_conv <= 0.0:
        E_maxresid = E_conv*3
        #convergence={'energy_rmse': E_conv}
        convergence={'energy_rmse': E_conv, 'energy_maxresid': E_maxresid}
    else:
        convergence={'energy_rmse': E_conv, 'force_rmse':f_conv}
    calc.model.lossfunction = LossFunction(convergence=convergence, force_coefficient=f_coeff)  # setting
    calc.train(images=images, overwrite=True)
    return
Ejemplo n.º 9
0
def train_test():
    """Gaussian/tflow train test."""
    perform, reason = check_perform()
    if not perform:
        print('Skipping this test because {}.'.format(reason))
        return

    from amp.model.tflow import NeuralNetwork
    label = 'train_test/calc'
    train_images = generate_data(2)
    convergence = {'energy_rmse': 0.02, 'force_rmse': 0.02}

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=(3, 3),
                                   convergenceCriteria=convergence),
               label=label,
               cores=1)

    calc.train(images=train_images, )
    for image in train_images:
        print("energy =", calc.get_potential_energy(image))
        print("forces =", calc.get_forces(image))
Ejemplo n.º 10
0
def train_test():
    """Gaussian/Neural train test."""
    label = 'train_test/calc'
    train_images = generate_data(2)

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=(3, 3)),
               label=label,
               cores=1)
    loss = LossFunction(convergence={'energy_rmse': 0.02, 'force_rmse': 0.03})
    calc.model.lossfunction = loss

    calc.train(images=train_images, )
    for image in train_images:
        print("energy = %s" % str(calc.get_potential_energy(image)))
        print("forces = %s" % str(calc.get_forces(image)))

    # Test that we can re-load this calculator and call it again.
    del calc
    calc2 = Amp.load(label + '.amp')
    for image in train_images:
        print("energy = %s" % str(calc2.get_potential_energy(image)))
        print("forces = %s" % str(calc2.get_forces(image)))
Ejemplo n.º 11
0
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 12 21:54:34 2020

@author: srava
"""
from ase.io import read
from ase.io.trajectory import Trajectory
import numpy as np
from ase.calculators.emt import EMT

from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.utilities import hash_images
from amp.model.neuralnetwork import NeuralNetwork

import matplotlib.pyplot as plt

calc = Amp(descriptor=Gaussian(), model=NeuralNetwork(),
           label='calc')
calc.model.lossfunction.parameters['convergence'].update(
    {'energy_rmse': 0.05,})
calc.train(images='training_data.traj')
Ejemplo n.º 12
0
def test():

    pwd = os.getcwd()
    os.mkdir(os.path.join(pwd, 'consistnone'))

    images = generate_images()

    count = 0
    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 7):

                            string = 'consistnone/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                global_search = \
                                    SimulatedAnnealing(temperature=10, steps=5)

                            calc = Amp(descriptor=None,
                                       regression=NeuralNetwork(
                                           hiddenlayers=(2, 1),
                                           activation='tanh',
                                           weights=weights,
                                           scalings=scalings,
                                       ),
                                       fortran=fortran,
                                       label=label)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=global_search,
                                       extend_variables=extend_variables)

                            if count == 0:
                                reference_cost_function = calc.cost_function
                                reference_energy_rmse = \
                                    calc.energy_per_atom_rmse
                                reference_force_rmse = calc.force_rmse
                                ref_cost_fxn_variable_derivatives = \
                                    calc.der_variables_cost_function
                            else:
                                assert (abs(calc.cost_function -
                                            reference_cost_function) <
                                        10.**(-10.)), \
                                    '''Cost function value for %r fortran, %r
                                data format, %r save_memory, and %i cores is
                                not consistent with the value of python version
                                on single core.''' % (fortran, data_format,
                                                      save_memory, cores)

                            assert (abs(calc.energy_per_atom_rmse -
                                        reference_energy_rmse) <
                                    10.**(-10.)), \
                                '''Energy rmse value for %r fortran, %r data
                            format, %r save_memory, and %i cores is not
                            consistent with the value of python version on
                            single core.''' % (fortran, data_format,
                                               save_memory, cores)

                            assert (abs(calc.force_rmse -
                                        reference_force_rmse) < 10.**(-10.)), \
                                '''Force rmse value for %r fortran, %r data
                            format, %r save_memory, and %i cores is not
                            consistent with the value of python version on
                            single core.''' % (fortran, data_format,
                                               save_memory, cores)

                            for _ in range(
                                    len(ref_cost_fxn_variable_derivatives)):
                                assert (calc.der_variables_cost_function[_] -
                                        ref_cost_fxn_variable_derivatives[_] <
                                        10.**(-10.))
                                '''Derivative of the cost function for %r
                                fortran, %r data format, %r save_memory, and %i
                                cores is not consistent with the value of
                                python version on single
                                core. ''' % (fortran, data_format, save_memory,
                                             cores)

                            count = count + 1
Ejemplo n.º 13
0
#!/usr/bin/env python
from amp import Amp
from amp.descriptor import Behler
from amp.regression import NeuralNetwork

calc = Amp(label="./",
           descriptor=Behler(cutoff=6.0),
           regression=NeuralNetwork(hiddenlayers=(2, 16)))

calc.train("../train.db",
           cores=12,
           force_goal=None,
           extend_variables=False)
Ejemplo n.º 14
0
def test():
    """Gaussian/Neural numeric-analytic consistency."""
    images = generate_data()
    regressor = Regressor(optimizer='BFGS')

    _G = make_symmetry_functions(type='G2',
                                 etas=[0.05, 5.],
                                 elements=['Cu', 'Pt'])
    _G += make_symmetry_functions(type='G4',
                                  etas=[0.005],
                                  zetas=[1., 4.],
                                  gammas=[1.],
                                  elements=['Cu', 'Pt'])
    Gs = {'Cu': _G, 'Pt': _G}
    calc = Amp(descriptor=Gaussian(Gs=Gs),
               model=NeuralNetwork(
                   hiddenlayers=(2, 1),
                   regressor=regressor,
                   randomseed=42,
               ),
               cores=1)

    step = 0
    for d in [None, 0.00001]:
        for fortran in [True, False]:
            for cores in [1, 2]:
                step += 1
                label = \
                    'numeric_analytic_test/analytic-%s-%i' % (fortran, cores) \
                    if d is None \
                    else 'numeric_analytic_test/numeric-%s-%i' \
                    % (fortran, cores)
                print(label)

                loss = LossFunction(convergence={
                    'energy_rmse': 10**10,
                    'force_rmse': 10**10
                },
                                    d=d)
                calc.set_label(label)
                calc.dblabel = 'numeric_analytic_test/analytic-True-1'
                calc.model.lossfunction = loss
                calc.descriptor.fortran = fortran
                calc.model.fortran = fortran
                calc.cores = cores

                calc.train(images=images, )

                if step == 1:
                    ref_energies = []
                    ref_forces = []
                    for image in images:
                        ref_energies += [calc.get_potential_energy(image)]
                        ref_forces += [calc.get_forces(image)]
                        ref_dloss_dparameters = \
                            calc.model.lossfunction.dloss_dparameters
                else:
                    energies = []
                    forces = []
                    for image in images:
                        energies += [calc.get_potential_energy(image)]
                        forces += [calc.get_forces(image)]
                        dloss_dparameters = \
                            calc.model.lossfunction.dloss_dparameters

                    for image_no in range(2):

                        diff = abs(energies[image_no] - ref_energies[image_no])
                        assert (diff < 10.**(-13.)), \
                            'The calculated value of energy of image %i is ' \
                            'wrong!' % (image_no + 1)

                        for atom_no in range(len(images[0])):
                            for i in range(3):
                                diff = abs(forces[image_no][atom_no][i] -
                                           ref_forces[image_no][atom_no][i])
                                assert (diff < 10.**(-10.)), \
                                    'The calculated %i force of atom %i of ' \
                                    'image %i is wrong!' \
                                    % (i, atom_no, image_no + 1)
                        # Checks analytical and numerical dloss_dparameters
                        for _ in range(len(ref_dloss_dparameters)):
                            diff = abs(dloss_dparameters[_] -
                                       ref_dloss_dparameters[_])
                            assert(diff < 10 ** (-10.)), \
                                'The calculated value of loss function ' \
                                'derivative is wrong!'
    # Checks analytical and numerical forces
    forces = []
    for image in images:
        image.set_calculator(calc)
        forces += [calc.calculate_numerical_forces(image, d=d)]
    for atom_no in range(len(images[0])):
        for i in range(3):
            diff = abs(forces[image_no][atom_no][i] -
                       ref_forces[image_no][atom_no][i])
            print('{:3d} {:1d} {:7.1e}'.format(atom_no, i, diff))
            assert (diff < 10.**(-6.)), \
                'The calculated %i force of atom %i of ' \
                'image %i is wrong! (Diff = %f)' \
                % (i, atom_no, image_no + 1, diff)
Ejemplo n.º 15
0
from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork
from amp.model import LossFunction
from amp import analysis
import ase
from ase import io
import sys

calc = Amp(descriptor=Gaussian(), model=NeuralNetwork(), label="calc")
calc.model.lossfunction = LossFunction(convergence={
    'energy_rmse': 0.02,
    'force_rmse': 0.02
})
images = ase.io.read("water.extxyz", ":")
# images = ase.io.read("../datasets/COCu/COCu_pbc_500.traj", ":")
IMAGES = []
for i in range(100):
    IMAGES.append(images[i])
calc.train(IMAGES)
# analysis.plot_parity("calc.amp", IMAGES, overwrite=True)
Ejemplo n.º 16
0
def train_amp(baseframe=200,
              traj='ethane.traj',
              convergence={
                  'energy_rmse': 0.25,
                  'force_rmse': 0.5
              },
              elements=['C', 'H', 'O'],
              cores=4):
    """Gaussian/tflow train test."""
    p = ple()
    label = 'amp'
    all_images = Trajectory(traj)
    nimg, mean_e = get_mean_energy(all_images)

    G = make_symmetry_functions(elements=elements,
                                type='G2',
                                etas=np.logspace(np.log10(0.05),
                                                 np.log10(5.),
                                                 num=4))
    G += make_symmetry_functions(elements=elements,
                                 type='G5',
                                 etas=[0.005],
                                 zetas=[1., 4.],
                                 gammas=[+1., -1.])
    G = {element: G for element in elements}  # Gs=G

    if not isfile('amp.amp'):
        # print('\nset up calculator ...\n')
        calc = Amp(descriptor=Gaussian(mode='atom-centered', Gs=G),
                   model=NeuralNetwork(hiddenlayers=(1024, 1024, 1024, 512,
                                                     512, 256, 256, 256, 256,
                                                     128, 128),
                                       convergenceCriteria=convergence,
                                       activation='tanh',
                                       energy_coefficient=1.0,
                                       force_coefficient=None,
                                       optimizationMethod='ADAM',
                                       parameters={'energyMeanScale': mean_e},
                                       maxTrainingEpochs=100000),
                   label=label,
                   cores=cores)  # 'l-BFGS-b' or 'ADAM'
        trained_images = [all_images[j] for j in range(0, baseframe)]
        calc.train(overwrite=True, images=trained_images)
        del calc
    else:
        calc = Amp.load('amp.amp')
        calc.model.parameters['convergence'] = convergence
        calc.model.lossfunction = LossFunction(convergence=convergence)
        trained_images = [all_images[j] for j in range(0, baseframe)]
        calc.train(overwrite=True, images=trained_images)
        del calc

    edfts, eamps, eamps_ = [], [], []
    dolabel = True
    basestep = int(baseframe / tframe)

    system('epstopdf energies.eps')
    p.scatter(x, edft, eamp, eamp_, dolabel=dolabel)
    p.plot()

    plot_energies(edfts, eamps, eamp_=eamps_)
    system('epstopdf energies_scatter.eps')
Ejemplo n.º 17
0
images = [atoms]
g2_etas = [0.005]
g2_rs_s = [0] * 4
g4_etas = [0.005]
g4_zetas = [1., 4.]
g4_gammas = [1., -1.]
cutoff = 4
make_amp_descriptors_simple_nn(images, g2_etas, g2_rs_s, g4_etas, g4_zetas,
                               g4_gammas, cutoff)

G = make_symmetry_functions(elements=elements, type='G2', etas=g2_etas)

#Add Rs parameter (0.0 for default) to comply with my version of AMP
#for g in G:
#        g['Rs'] =  0.0

G += make_symmetry_functions(elements=elements,
                             type='G4',
                             etas=g4_etas,
                             zetas=g4_zetas,
                             gammas=g4_gammas)

calc = Amp(descriptor=Gaussian(Gs=G, cutoff=4.),
           cores=ncores,
           model=NeuralNetwork(hiddenlayers=hiddenlayers))

calc.model.lossfunction = LossFunction(convergence=convergence,
                                       force_coefficient=0.001)

calc.train(images=images)
Ejemplo n.º 18
0
#!/usr/bin/env python
from amp import Amp
from amp.descriptor import Behler
from amp.regression import NeuralNetwork

calc = Amp(label="./",
           descriptor=Behler(cutoff=6.5),
           regression=NeuralNetwork(hiddenlayers=(2, 7)))

calc.train("../train.db",
           cores=16,
           energy_goal=0.0005,
           force_goal=None,
           extend_variables=False)
Ejemplo n.º 19
0
             {"type":"G2", "element":"Pd", "eta":400., "Rs":4.0},
             {"type":"G2", "element":"Pd", "eta":400., "Rs":5.0},
             {"type":"G2", "element":"Pd", "eta":400., "Rs":6.0},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":-1.0, "zeta":100.0, "theta_s":-1.0},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":-1.0, "zeta":100.0, "theta_s":-1.5},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":-1.0, "zeta":100.0, "theta_s":-1.75},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":-1.0, "zeta":100.0, "theta_s":-2.0},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":-1.0, "zeta":300.0, "theta_s":-2.15},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":-1.0, "zeta":300.0, "theta_s":-2.25},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":1.0, "zeta":160.0, "theta_s":0.0},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":1.0, "zeta":320.0, "theta_s":0.25},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":1.0, "zeta":640.0, "theta_s":0.35},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":1.0, "zeta":160.0, "theta_s":0.5},
            {"type":"G4", "elements":["Pd", "Pd"],"eta":0.005, "gamma":1.0, "zeta":160.0, "theta_s":0.75},
             ]}


calc = Amp(descriptor=Gaussian(Gs=Gs,
                               cutoff=Cosine(6.0)
                               ),
           cores=24,
           model=NeuralNetwork(hiddenlayers=(50,), activation='sigmoid',
                               maxTrainingEpochs=20000,
                               energy_coefficient=1.0,
                               force_coefficient=0.1,
                               optimizationMethod='l-BFGS-b',
                               convergenceCriteria={'energy_rmse': 0.05,
                                                    'force_rmse': 0.05}))
calc.train(images='train.traj',overwrite=True)

Ejemplo n.º 20
0
def test():

    pwd = os.getcwd()
    os.mkdir(os.path.join(pwd, 'rotation_test'))

    for descriptor in [Gaussian(), Bispectrum(jmax=2.), Zernike(nmax=5)]:

        pwd = os.getcwd()
        os.mkdir(os.path.join(pwd, 'rotation_test/before_rot'))
        os.mkdir(os.path.join(pwd, 'rotation_test/after_rot'))

        # Non-rotated atomic configuration
        atoms = Atoms([
            Atom('Pt', (0., 0., 0.)),
            Atom('Pt', (0., 0., 1.)),
            Atom('Pt', (0., 2., 1.))
        ])

        atoms.set_constraint(FixAtoms(indices=[0]))
        atoms.set_calculator(EMT())
        atoms.get_potential_energy()
        atoms.get_forces(apply_constraint=False)

        calc = Amp(descriptor=descriptor,
                   fortran=False,
                   label='rotation_test/before_rot/')

        calc.train(images=[atoms],
                   force_goal=None,
                   energy_goal=10.**10.,
                   extend_variables=False,
                   global_search=None,
                   data_format='json')

        ###########################################################################

        # Randomly Rotated (and translated) atomic configuration
        rot = [random.random(), random.random(), random.random()]
        for i in range(1, len(atoms)):
            (atoms[i].x, atoms[i].y,
             atoms[i].z) = rotate_atom(atoms[i].x, atoms[i].y, atoms[i].z,
                                       rot[0] * np.pi, rot[1] * np.pi,
                                       rot[2] * np.pi)
        disp = [random.random(), random.random(), random.random()]
        for atom in atoms:
            atom.x += disp[0]
            atom.y += disp[1]
            atom.z += disp[2]

        calc = Amp(descriptor=descriptor,
                   fortran=False,
                   label='rotation_test/after_rot/')

        calc.train(images=[atoms],
                   force_goal=None,
                   energy_goal=10.**10.,
                   extend_variables=False,
                   global_search=None,
                   data_format='json')

        ###########################################################################

        fp1 = paropen('rotation_test/before_rot/fingerprints.json', 'rb')
        nonrotated_data = json.load(fp1)

        fp2 = paropen('rotation_test/after_rot/fingerprints.json', 'rb')
        rotated_data = json.load(fp2)

        for hash1, hash2 in zip(nonrotated_data.keys(), rotated_data.keys()):
            for index in nonrotated_data[hash1]:
                for _ in range(len(nonrotated_data[hash1][index])):
                    assert abs(nonrotated_data[hash1][index][_] -
                               rotated_data[hash2][index][_]) < 10.**(-7.)

        shutil.rmtree('rotation_test/before_rot')
        shutil.rmtree('rotation_test/after_rot')
Ejemplo n.º 21
0
else:
    label = label
    dblabel = dblabel
    desc = Gaussian(cutoff=cutoff)
    model = NeuralNetwork(hiddenlayers=framework)
    calc = Amp(label=label,
            dblabel=dblabel,
            descriptor=desc,
            regression=model)


{% if optimizer %}
# Change optimization algorithm
from amp.regression import Regressor
from scipy.optimize import {{ optimizer }}

regressor = Regressor(optimizer={{ optimizer }})
calc.model.regressor = regressor
{% endif %}

           
# Train the network
calc.train(images=images,
           data_format='db',
           cores=cores,
           energy_goal=energy_rmse,
           force_goal=force_rmse,
	   global_search=SimulatedAnnealing(temperature=70,
					    steps=50),
           extend_variables=False)
Ejemplo n.º 22
0
def train_images(images):
    calc = Amp(descriptor=Gaussian(), model=NeuralNetwork(hiddenlayers=(10, 10, 10)))
    calc.model.lossfunction = LossFunction(convergence={'energy_rmse': 0.001})
    calc.model.lossfunction = LossFunction(force_coefficient=-0.1)
    calc.train(images=images, overwrite=True)
Ejemplo n.º 23
0
os.chdir(work_dir)

# Get atoms from the database
images = []
db = connect(db_path)
for d in db.select(['iteration<={}'.format(iteration), 'train_set=True']):
    atoms = db.get_atoms(d.id)
    del atoms.constraints
    images.append(atoms)

# Build Amp object
framework_str = "-".join([str(f) for f in framework])
label = label
dblabel = dblabel
desc = Gaussian(cutoff=cutoff)
model = NeuralNetwork(hiddenlayers=framework)
calc = Amp(label=label,
           dblabel=dblabel,
           descriptor=desc,
           model=model,
	   cores=cores)
loss = LossFunction(convergence={'energy_rmse': energy_rmse,
                                 'force_rmse': force_rmse})
calc.model.lossfunction = loss
           
# Perform simulated annealing for global search
Annealer(calc=calc, images=images)

# Train the network
calc.train(images=images)
#import os
#from ase import Atoms, Atom, units
#import ase.io

from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork
from amp.model import LossFunction

calc = Amp(descriptor=Gaussian(),
           model=NeuralNetwork(hiddenlayers=(10, 10, 10)))
calc.model.lossfunction = LossFunction(convergence={
    'energy_rmse': 0.02,
    'force_rmse': 0.03
})

calc.train(images='geoopt_LCAO.traj')
Ejemplo n.º 25
0
def non_periodic_0th_bfgs_step_test():

    pwd = os.getcwd()
    os.mkdir(os.path.join(pwd, 'CuOPdbp'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp'))
    os.mkdir(os.path.join(pwd, 'CuOPdbp/0'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp/0'))
    os.mkdir(os.path.join(pwd, 'CuOPdbp/1'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp/1'))
    os.mkdir(os.path.join(pwd, 'CuOPdbp/2'))
    os.mkdir(os.path.join(pwd, '_CuOPdbp/2'))

    ###########################################################################
    # Making the list of periodic image

    images = [
        Atoms(symbols='PdOPd2',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 0., 0.], [0., 2., 0.], [0., 0., 3.],
                                  [1., 0., 0.]])),
        Atoms(symbols='PdOPd2',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 1., 0.], [1., 2., 1.], [-1., 1., 2.],
                                  [1., 3., 2.]])),
        Atoms(symbols='PdO',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[2., 1., -1.], [1., 2., 1.]])),
        Atoms(symbols='Pd2O',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[-2., -1., -1.], [1., 2., 1.], [3., 4.,
                                                                  4.]])),
        Atoms(symbols='Cu',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 0., 0.]]))
    ]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    ###########################################################################
    # Parameters

    Gs = {
        'O': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.2,
            'gamma': 0.3,
            'zeta': 1
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }],
        'Pd': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.2
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.9,
            'gamma': 0.75,
            'zeta': 1.5
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.4,
            'gamma': 0.3,
            'zeta': 4
        }],
        'Cu': [{
            'type': 'G2',
            'element': 'Cu',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Cu', 'O'],
            'eta': 0.2,
            'gamma': 0.3,
            'zeta': 1
        }, {
            'type': 'G4',
            'elements': ['Cu', 'Cu'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }]
    }

    hiddenlayers = {'O': (2), 'Pd': (2), 'Cu': (2)}

    weights = OrderedDict([
        ('O',
         OrderedDict([(1,
                       np.matrix([[-2.0, 6.0], [3.0, -3.0], [1.5, -0.9],
                                  [-2.5, -1.5]])),
                      (2, np.matrix([[5.5], [3.6], [1.4]]))])),
        ('Pd',
         OrderedDict([(1,
                       np.matrix([[-1.0, 3.0], [2.0, 4.2], [1.0, -0.7],
                                  [-3.0, 2.0]])),
                      (2, np.matrix([[4.0], [0.5], [3.0]]))])),
        ('Cu',
         OrderedDict([(1,
                       np.matrix([[0.0, 1.0], [-1.0, -2.0], [2.5, -1.9],
                                  [-3.5, 0.5]])),
                      (2, np.matrix([[0.5], [1.6], [-1.4]]))]))
    ])

    scalings = OrderedDict([
        ('O', OrderedDict([('intercept', -2.3), ('slope', 4.5)])),
        ('Pd', OrderedDict([('intercept', 1.6), ('slope', 2.5)])),
        ('Cu', OrderedDict([('intercept', -0.3), ('slope', -0.5)]))
    ])

    ###########################################################################
    # Correct values

    correct_cost = 7144.810783950215
    correct_energy_rmse = 24.318837496017185
    correct_force_rmse = 144.70282475062052
    correct_der_cost_fxn = [
        0, 0, 0, 0, 0, 0, 0.01374139170953901, 0.36318423812749656,
        0.028312691567496464, 0.6012336354445753, 0.9659002689921986,
        -1.2897770059416218, -0.5718960935176884, -2.6425667221503035,
        -1.1960399246712894, 0, 0, -2.7256379713943852, -0.9080181026559658,
        -0.7739948323247023, -0.2915789426043727, -2.05998290443513,
        -0.6156374289747903, -0.0060865174621348985, -0.8296785483640939,
        0.0008092646748983969, 0.041613027034688874, 0.003426469079592851,
        -0.9578004568876517, -0.006281929608090211, -0.28835884773094056,
        -4.2457774110285245, -4.317412094174614, -8.02385959091948,
        -3.240512651984099, -27.289862194996896, -26.8177742762254,
        -82.45107056053345, -80.6816768350809
    ]

    ###########################################################################
    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 7):

                            string = 'CuOPdbp/0/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                gs = \
                                    SimulatedAnnealing(temperature=10, steps=5)
                            elif global_search is None:
                                gs = None

                            print label

                            calc = Amp(descriptor=Gaussian(cutoff=6.5, Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='sigmoid',
                                       ),
                                       fortran=fortran,
                                       label=label)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) <
                                    10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                                is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-7)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):

                                assert(abs(calc.der_variables_cost_function[
                                    _] - correct_der_cost_fxn[_]) <
                                    10 ** (-9)), \
                                    'The calculated value of cost function \
                                derivative is wrong!'

                            dblabel = label
                            secondlabel = '_' + label

                            calc = Amp(descriptor=Gaussian(cutoff=6.5, Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='sigmoid',
                                       ),
                                       fortran=fortran,
                                       label=secondlabel,
                                       dblabel=dblabel)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) <
                                    10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                                is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-7)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):
                                assert(abs(calc.der_variables_cost_function[
                                    _] - correct_der_cost_fxn[_] <
                                    10 ** (-9))), \
                                    'The calculated value of cost function \
Ejemplo n.º 26
0
def test():
    """Guassian/Neural training.

    Checks consistency of pure-python and fortran versions.
    """

    images = make_images()

    convergence = {'energy_rmse': 10.**10.,
                   'energy_maxresid': 10.**10.,
                   'force_rmse': 10.**10.,
                   'force_maxresid': 10.**10., }

    regressor = Regressor(optimizer='BFGS')

    count = 0
    for fortran in [False, True]:
        for cores in range(1, 2):
            string = 'consistgauss/%s-%i'
            label = string % (fortran, cores)
            calc = Amp(descriptor=Gaussian(cutoff=cutoff,
                                           Gs=Gs,
                                           fortran=fortran,),
                       model=NeuralNetwork(hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation=activation,
                                           fprange=fingerprints_range,
                                           regressor=regressor,),
                       label=label,
                       cores=1)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images,)

            if count == 0:
                ref_loss = calc.model.lossfunction.loss
                ref_energy_loss = calc.model.lossfunction.energy_loss
                ref_force_loss = calc.model.lossfunction.force_loss
                ref_dloss_dparameters = \
                    calc.model.lossfunction.dloss_dparameters
            else:
                assert (abs(calc.model.lossfunction.loss -
                            ref_loss) < 10.**(-10.)), \
                    '''Loss function value for %r fortran, and %i cores is
                not consistent with the value of python version
                on single core.''' % (fortran, cores)

                assert (abs(calc.model.lossfunction.energy_loss -
                            ref_energy_loss) <
                        10.**(-9.)), \
                    '''Energy rmse value for %r fortran, and %i cores is not
                consistent with the value of python version on
                single core.''' % (fortran, cores)

                assert (abs(calc.model.lossfunction.force_loss -
                            ref_force_loss) <
                        10.**(-9.)), \
                    '''Force rmse value for %r fortran, and %i cores is not
                consistent with the value of python version on
                single core.''' % (fortran, cores)

                for _ in range(len(ref_dloss_dparameters)):
                    assert (calc.model.lossfunction.dloss_dparameters[_] -
                            ref_dloss_dparameters[_] < 10.**(-10.))
                    '''Derivative of the cost function for %r
                    fortran, and %i
                    cores is not consistent with the value of
                    python version on single
                    core. ''' % (fortran, cores)

            count = count + 1
def non_periodic_0th_bfgs_step_test():

    # Making the list of periodic image

    images = [Atoms(symbols='PdOPd2',
                    pbc=np.array([False, False, False], dtype=bool),
                    cell=np.array(
                        [[1.,  0.,  0.],
                         [0.,  1.,  0.],
                            [0.,  0.,  1.]]),
                    positions=np.array(
                        [[0.,  0.,  0.],
                         [0.,  2.,  0.],
                            [0.,  0.,  3.],
                            [1.,  0.,  0.]])),
              Atoms(symbols='PdOPd2',
                    pbc=np.array([False, False, False], dtype=bool),
                    cell=np.array(
                        [[1.,  0.,  0.],
                         [0.,  1.,  0.],
                            [0.,  0.,  1.]]),
                    positions=np.array(
                        [[0.,  1.,  0.],
                         [1.,  2.,  1.],
                            [-1.,  1.,  2.],
                            [1.,  3.,  2.]])),
              Atoms(symbols='PdO',
                    pbc=np.array([False, False, False], dtype=bool),
                    cell=np.array(
                        [[1.,  0.,  0.],
                         [0.,  1.,  0.],
                         [0.,  0.,  1.]]),
                    positions=np.array(
                        [[2.,  1., -1.],
                         [1.,  2.,  1.]])),
              Atoms(symbols='Pd2O',
                    pbc=np.array([False, False, False], dtype=bool),
                    cell=np.array(
                        [[1.,  0.,  0.],
                         [0.,  1.,  0.],
                         [0.,  0.,  1.]]),
                    positions=np.array(
                        [[-2., -1., -1.],
                         [1.,  2.,  1.],
                         [3.,  4.,  4.]])),
              Atoms(symbols='Cu',
                    pbc=np.array([False, False, False], dtype=bool),
                    cell=np.array(
                        [[1.,  0.,  0.],
                         [0.,  1.,  0.],
                         [0.,  0.,  1.]]),
                    positions=np.array(
                        [[0.,  0.,  0.]]))]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    # Parameters

    Gs = {'O': [{'type': 'G2', 'element': 'Pd', 'eta': 0.8},
                {'type': 'G4', 'elements': [
                    'Pd', 'Pd'], 'eta':0.2, 'gamma':0.3, 'zeta':1},
                {'type': 'G4', 'elements': ['O', 'Pd'], 'eta':0.3, 'gamma':0.6,
                 'zeta':0.5}],
          'Pd': [{'type': 'G2', 'element': 'Pd', 'eta': 0.2},
                 {'type': 'G4', 'elements': ['Pd', 'Pd'],
                  'eta':0.9, 'gamma':0.75, 'zeta':1.5},
                 {'type': 'G4', 'elements': ['O', 'Pd'], 'eta':0.4,
                  'gamma':0.3, 'zeta':4}],
          'Cu': [{'type': 'G2', 'element': 'Cu', 'eta': 0.8},
                 {'type': 'G4', 'elements': ['Cu', 'O'],
                  'eta':0.2, 'gamma':0.3, 'zeta':1},
                 {'type': 'G4', 'elements': ['Cu', 'Cu'], 'eta':0.3,
                  'gamma':0.6, 'zeta':0.5}]}

    hiddenlayers = {'O': (2,), 'Pd': (2,), 'Cu': (2,)}

    weights = OrderedDict([('O', OrderedDict([(1, np.matrix([[-2.0, 6.0],
                                                             [3.0, -3.0],
                                                             [1.5, -0.9],
                                                             [-2.5, -1.5]])),
                                              (2, np.matrix([[5.5],
                                                             [3.6],
                                                             [1.4]]))])),
                           ('Pd', OrderedDict([(1, np.matrix([[-1.0, 3.0],
                                                              [2.0, 4.2],
                                                              [1.0, -0.7],
                                                              [-3.0, 2.0]])),
                                               (2, np.matrix([[4.0],
                                                              [0.5],
                                                              [3.0]]))])),
                           ('Cu', OrderedDict([(1, np.matrix([[0.0, 1.0],
                                                              [-1.0, -2.0],
                                                              [2.5, -1.9],
                                                              [-3.5, 0.5]])),
                                               (2, np.matrix([[0.5],
                                                              [1.6],
                                                              [-1.4]]))]))])

    scalings = OrderedDict([('O', OrderedDict([('intercept', -2.3),
                                               ('slope', 4.5)])),
                            ('Pd', OrderedDict([('intercept', 1.6),
                                                ('slope', 2.5)])),
                            ('Cu', OrderedDict([('intercept', -0.3),
                                                ('slope', -0.5)]))])

    # Correct values

    ref_loss = 7144.8107853579895
    ref_energyloss = (24.318837496016506 ** 2.) * 5
    ref_forceloss = (144.70282477494519 ** 2.) * 5
    ref_dloss_dparameters = np.array([0, 0, 0, 0, 0, 0,
                                      0.01374139170953901,
                                      0.36318423812749656,
                                      0.028312691567496464,
                                      0.6012336354445753,
                                      0.9659002689921986,
                                      -1.289777005924742,
                                      -0.5718960934643078,
                                      -2.642566722179569,
                                      -1.196039924610482, 0, 0,
                                      -2.72563797131018,
                                      -0.9080181024866707,
                                      -0.7739948323226851,
                                      -0.29157894253717415,
                                      -2.0599829042717404,
                                      -0.6156374289895887,
                                      -0.006086517460749253,
                                      -0.829678548408266,
                                      0.0008092646745710161,
                                      0.04161302703491613,
                                      0.0034264690790135606,
                                      -0.957800456897051,
                                      -0.006281929606579444,
                                      -0.2883588477371198,
                                      -4.245777410962108,
                                      -4.3174120941045535,
                                      -8.02385959091948,
                                      -3.240512651984099,
                                      -27.289862194988853,
                                      -26.8177742762544,
                                      -82.45107056051073,
                                      -80.68167683508715])
    ref_energy_maxresid = 54.21915548269209
    ref_force_maxresid = 791.6736436232306

    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for fortran in [False, True]:
        for cores in range(1, 6):
            label = 'train-nonperiodic/%s-%i' % (fortran, cores)
            print label
            calc = Amp(descriptor=Gaussian(cutoff=6.5,
                                           Gs=Gs,
                                           fortran=fortran,),
                       model=NeuralNetwork(hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='sigmoid',
                                           regressor=regressor,
                                           fortran=fortran,),
                       label=label,
                       dblabel=label,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images,)
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force RMSE is wrong!'
            diff = abs(calc.model.lossfunction.energy_maxresid -
                       ref_energy_maxresid)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom max residual is wrong!'
            diff = abs(calc.model.lossfunction.force_maxresid -
                       ref_force_maxresid)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force max residual is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-12.)), \
                    "Calculated value of loss function derivative is wrong!"

            dblabel = label
            secondlabel = '_' + label

            calc = Amp(descriptor=Gaussian(cutoff=6.5,
                                           Gs=Gs,
                                           fortran=fortran,),
                       model=NeuralNetwork(hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='sigmoid',
                                           regressor=regressor,
                                           fortran=fortran,),
                       label=secondlabel,
                       dblabel=dblabel,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images,)
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force RMSE is wrong!'
            diff = abs(calc.model.lossfunction.energy_maxresid -
                       ref_energy_maxresid)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom max residual is wrong!'
            diff = abs(calc.model.lossfunction.force_maxresid -
                       ref_force_maxresid)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force max residual is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-12.)), \
                    'Calculated value of loss function derivative is wrong!'
Ejemplo n.º 28
0
#!/usr/bin/env python
from amp import Amp
from amp.descriptor import Gaussian
from amp.regression import NeuralNetwork
from ase.db import connect
from amp import SimulatedAnnealing

db = connect('../../../database/master.db')

images = []
for d in db.select('train_set=True'):
    atoms = db.get_atoms(d.id)
    del atoms.constraints
    images += [atoms]

for n in [2, 3]:

    calc = Amp(label='./',
               dblabel='../../',
               descriptor=Gaussian(cutoff=6.5),
               regression=NeuralNetwork(hiddenlayers=(2, n)))

    calc.train(images=images,
               data_format='db',
               cores=4,
               energy_goal=1e-2,
               force_goal=1e-1,
               global_search=SimulatedAnnealing(temperature=70, steps=50),
               extend_variables=False)
Ejemplo n.º 29
0
def non_periodic_0th_bfgs_step_test():
    """Gaussian/Neural training non-periodic standard test.

    Compares results to that expected from separate mathematica
    calculations.
    """

    images = [
        Atoms(symbols='PdOPd2',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 0., 0.], [0., 2., 0.], [0., 0., 3.],
                                  [1., 0., 0.]])),
        Atoms(symbols='PdOPd2',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 1., 0.], [1., 2., 1.], [-1., 1., 2.],
                                  [1., 3., 2.]])),
        Atoms(symbols='PdO',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[2., 1., -1.], [1., 2., 1.]])),
        Atoms(symbols='Pd2O',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[-2., -1., -1.], [1., 2., 1.], [3., 4.,
                                                                  4.]])),
        Atoms(symbols='Cu',
              pbc=np.array([False, False, False], dtype=bool),
              cell=np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]),
              positions=np.array([[0., 0., 0.]]))
    ]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    # Parameters

    Gs = {
        'O': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.2,
            'gamma': 0.3,
            'zeta': 1
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }],
        'Pd': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.2
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.9,
            'gamma': 0.75,
            'zeta': 1.5
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.4,
            'gamma': 0.3,
            'zeta': 4
        }],
        'Cu': [{
            'type': 'G2',
            'element': 'Cu',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Cu', 'O'],
            'eta': 0.2,
            'gamma': 0.3,
            'zeta': 1
        }, {
            'type': 'G4',
            'elements': ['Cu', 'Cu'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }]
    }

    hiddenlayers = {'O': (2, ), 'Pd': (2, ), 'Cu': (2, )}

    weights = OrderedDict([
        ('O',
         OrderedDict([(1,
                       np.matrix([[-2.0, 6.0], [3.0, -3.0], [1.5, -0.9],
                                  [-2.5, -1.5]])),
                      (2, np.matrix([[5.5], [3.6], [1.4]]))])),
        ('Pd',
         OrderedDict([(1,
                       np.matrix([[-1.0, 3.0], [2.0, 4.2], [1.0, -0.7],
                                  [-3.0, 2.0]])),
                      (2, np.matrix([[4.0], [0.5], [3.0]]))])),
        ('Cu',
         OrderedDict([(1,
                       np.matrix([[0.0, 1.0], [-1.0, -2.0], [2.5, -1.9],
                                  [-3.5, 0.5]])),
                      (2, np.matrix([[0.5], [1.6], [-1.4]]))]))
    ])

    scalings = OrderedDict([
        ('O', OrderedDict([('intercept', -2.3), ('slope', 4.5)])),
        ('Pd', OrderedDict([('intercept', 1.6), ('slope', 2.5)])),
        ('Cu', OrderedDict([('intercept', -0.3), ('slope', -0.5)]))
    ])

    # Correct values
    if aseversion < 12:  # EMT values have changed from 3.12.0 version
        ref_loss = 7144.8107853579895
        ref_energyloss = (24.318837496016506**2.) * 5
        ref_forceloss = (144.70282477494519**2.) * 5
        ref_dloss_dparameters = np.array([
            0, 0, 0, 0, 0, 0, 0.01374139170953901, 0.36318423812749656,
            0.028312691567496464, 0.6012336354445753, 0.9659002689921986,
            -1.289777005924742, -0.5718960934643078, -2.642566722179569,
            -1.196039924610482, 0, 0, -2.72563797131018, -0.9080181024866707,
            -0.7739948323226851, -0.29157894253717415, -2.0599829042717404,
            -0.6156374289895887, -0.006086517460749253, -0.829678548408266,
            0.0008092646745710161, 0.04161302703491613, 0.0034264690790135606,
            -0.957800456897051, -0.006281929606579444, -0.2883588477371198,
            -4.245777410962108, -4.3174120941045535, -8.02385959091948,
            -3.240512651984099, -27.289862194988853, -26.8177742762544,
            -82.45107056051073, -80.68167683508715
        ])
        ref_energy_maxresid = 54.21915548269209
        ref_force_maxresid = 791.6736436232306
    else:
        ref_loss = 7144.807220773296
        ref_energyloss = (24.318829702548342**2.) * 5
        ref_forceloss = (144.70279593472887**2.) * 5
        ref_dloss_dparameters = np.array([
            0, 0, 0, 0, 0, 0, 0.01374139170953901, 0.36318423812749656,
            0.028312691567496464, 0.6012336354445753, 0.9659002689921986,
            -1.2897765357544038, -0.5718958286530584, -2.642565840915077,
            -1.1960394346870424, 0, 0, -2.7256370964673238,
            -0.9080177898160631, -0.7739945904033205, -0.29157882294526083,
            -2.0599825024556027, -0.6156371996742152, -0.006086514109432934,
            -0.8296782839032163, 0.0008092653341775424, 0.04161306816722683,
            0.0034264692325982156, -0.9578001030483714, -0.006281927374160914,
            -0.28835874344086, -4.245775886469167, -4.317410633818672,
            -8.02385959091948, -3.240512651984099, -27.289853042932705,
            -26.81776520493048, -82.45104200076496, -80.68164887277251
        ])
        ref_energy_maxresid = 54.21913802238612
        ref_force_maxresid = 791.6734866205463

    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for fortran in [False, True]:
        for cores in range(1, 6):
            label = 'train-nonperiodic/%s-%i' % (fortran, cores)
            print(label)
            calc = Amp(descriptor=Gaussian(
                cutoff=6.5,
                Gs=Gs,
                fortran=fortran,
            ),
                       model=NeuralNetwork(
                           hiddenlayers=hiddenlayers,
                           weights=weights,
                           scalings=scalings,
                           activation='sigmoid',
                           regressor=regressor,
                           fortran=fortran,
                       ),
                       label=label,
                       dblabel=label,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images, )
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            print("diff at 204 =", diff)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force RMSE is wrong!'
            diff = abs(calc.model.lossfunction.energy_maxresid -
                       ref_energy_maxresid)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom max residual is wrong!'
            diff = abs(calc.model.lossfunction.force_maxresid -
                       ref_force_maxresid)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force max residual is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-12.)), \
                    "Calculated value of loss function derivative is wrong!"

            dblabel = label
            secondlabel = '_' + label

            calc = Amp(descriptor=Gaussian(
                cutoff=6.5,
                Gs=Gs,
                fortran=fortran,
            ),
                       model=NeuralNetwork(
                           hiddenlayers=hiddenlayers,
                           weights=weights,
                           scalings=scalings,
                           activation='sigmoid',
                           regressor=regressor,
                           fortran=fortran,
                       ),
                       label=secondlabel,
                       dblabel=dblabel,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images, )
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force RMSE is wrong!'
            diff = abs(calc.model.lossfunction.energy_maxresid -
                       ref_energy_maxresid)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom max residual is wrong!'
            diff = abs(calc.model.lossfunction.force_maxresid -
                       ref_force_maxresid)
            assert (diff < 10 ** (-10.)), \
                'Calculated value of force max residual is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-12.)), \
                    'Calculated value of loss function derivative is wrong!'
Ejemplo n.º 30
0
def test():

    pwd = os.getcwd()
    os.mkdir(os.path.join(pwd, 'CuOPdnone'))
    os.mkdir(os.path.join(pwd, '_CuOPdnone'))

    ###########################################################################
    # Parameters

    weights = OrderedDict([(1,
                            np.array([[1., 2.5], [0., 1.5], [0.,
                                                             -1.5], [3., 9.],
                                      [1., -2.5], [2., 3.], [2.,
                                                             2.5], [3., 0.],
                                      [-3.5, 1.], [5., 3.], [-2., 2.5],
                                      [-4., 4.], [0., 0.]])),
                           (2, np.array([[1.], [2.], [0.]])),
                           (3, np.array([[3.5], [0.]]))])

    scalings = OrderedDict([('intercept', 3.), ('slope', 2.)])

    images = generate_images()

    ###########################################################################
    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 7):

                            string = 'CuOPdnone/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                gs = \
                                    SimulatedAnnealing(temperature=10, steps=5)
                            elif global_search is None:
                                gs = None

                            print label

                            calc = Amp(
                                descriptor=None,
                                regression=NeuralNetwork(
                                    hiddenlayers=(2, 1),
                                    activation='tanh',
                                    weights=weights,
                                    scalings=scalings,
                                ),
                                fortran=fortran,
                                label=label,
                            )

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            # Check for consistency between the two models
                            assert (abs(calc.cost_function - cost_function) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'
                            assert (abs(calc.energy_per_atom_rmse -
                                        energy_rmse) <
                                    10.**(-5.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'
                            assert (abs(calc.force_rmse - force_rmse) <
                                    10 ** (-5)), \
                                'The calculated value of force RMSE is wrong!'

                            dblabel = label
                            secondlabel = '_' + label

                            calc = Amp(descriptor=None,
                                       regression=NeuralNetwork(
                                           hiddenlayers=(2, 1),
                                           activation='tanh',
                                           weights=weights,
                                           scalings=scalings,
                                       ),
                                       fortran=fortran,
                                       label=secondlabel,
                                       dblabel=dblabel)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10.,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            # Check for consistency between the two models
                            assert (abs(calc.cost_function - cost_function) <
                                    10.**(-5.)), \
                                'The calculated value of cost function is \
                                wrong!'
                            assert (abs(calc.energy_per_atom_rmse -
                                        energy_rmse) <
                                    10.**(-5.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'
                            assert (abs(calc.force_rmse - force_rmse) <
                                    10 ** (-5)), \
                                'The calculated value of force RMSE is wrong!'
Ejemplo n.º 31
0
#!/usr/bin/env python
from amp import Amp
from amp.descriptor import *
from amp.regression import *

calc = Amp(label="./",
           descriptor=Behler(cutoff=6.0),
           regression=NeuralNetwork(hiddenlayers=(2, 3)))

calc.train("../train.db", # The training data
           cores=1,
           global_search=None, # not found the simulated annealing feature useful
           extend_variables=False) # feature does not work properly and will crash
Ejemplo n.º 32
0
def train_rnn(baseframe=100,
              tframe=8,
              total_step=10,
              traj='ethane.traj',
              convergence={
                  'energy_rmse': 0.25,
                  'force_rmse': 0.5
              },
              elements=['C', 'H', 'O'],
              hiddenlayers=(64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64),
              optim='ADAM',
              cores=4):
    """Gaussian/tflow train test."""
    p = ple()
    label = 'amp'
    all_images = Trajectory(traj)
    nimg, mean_e = get_mean_energy(all_images)

    G = make_symmetry_functions(elements=elements,
                                type='G2',
                                etas=np.logspace(np.log10(0.05),
                                                 np.log10(5.),
                                                 num=4))
    G += make_symmetry_functions(elements=elements,
                                 type='G5',
                                 etas=[0.005],
                                 zetas=[1., 4.],
                                 gammas=[+1., -1.])
    G = {element: G for element in elements}  # Gs=G

    if not isfile('amp.amp'):
        print('\nset up calculator ...\n')
        calc = Amp(descriptor=Gaussian(mode='atom-centered', Gs=G),
                   model=NeuralNetwork(hiddenlayers=hiddenlayers,
                                       convergenceCriteria=convergence,
                                       activation='tanh',
                                       energy_coefficient=1.0,
                                       force_coefficient=None,
                                       optimizationMethod=optim,
                                       parameters={'energyMeanScale': mean_e},
                                       maxTrainingEpochs=100000),
                   label=label,
                   cores=cores)  # 'l-BFGS-b' or 'ADAM'
        trained_images = [all_images[j] for j in range(0, baseframe)]
        calc.train(overwrite=True, images=trained_images)
        del calc
    else:
        calc = Amp.load('amp.amp')
        calc.model.parameters['convergence'] = convergence
        calc.model.lossfunction = LossFunction(convergence=convergence)
        trained_images = [all_images[j] for j in range(0, baseframe)]
        calc.train(overwrite=True, images=trained_images)
        del calc

    tstep = int((nimg - baseframe) / tframe)
    if total_step > tstep:
        total_step = tstep
    print('Max train cycle of %d is allowed.' % total_step)

    edfts, eamps, eamps_ = [], [], []
    dolabel = True
    basestep = int(baseframe / tframe)

    for step in range(basestep, total_step + basestep):
        new_images = [
            all_images[j]
            for j in range(0 + step * tframe, tframe + step * tframe)
        ]
        trained_images.extend(new_images)

        x, edft, eamp, eamp_ = [], [], [], []
        ii = step * tframe

        # -----    test     -----
        calc1 = Amp.load('amp.amp')
        for i, image in enumerate(new_images):
            x.append(ii)
            eamp_.append(calc1.get_potential_energy(image))
            eamps_.append(eamp_[-1])
            edft.append(image.get_potential_energy())
            edfts.append(edft[-1])
            ii += 1
        del calc1

        # -----    train     -----
        calc = Amp.load('amp.amp')
        calc.model.lossfunction = LossFunction(convergence=convergence)
        # calc.model.convergenceCriteria=convergence
        calc.train(overwrite=True, images=trained_images)
        del calc

        # -----    test     -----
        calc2 = Amp.load('amp.amp')
        print('\n----   current training result   ---- \n')
        for i, image in enumerate(new_images):
            eamp.append(calc2.get_potential_energy(image))
            eamps.append(eamp[-1])
            print("energy(AMP) = %f energy(DFT) = %f" % (eamp[-1], edft[i]))
            # print("forces = %s" % str(calc2.get_forces(image)))
        del calc2

        plot_energies(edfts, eamps, eamp_=None)
        system('epstopdf energies.eps')

        p.scatter(x, edft, eamp, eamp_, dolabel=dolabel)
        if dolabel:
            dolabel = False

    p.plot()
    system('epstopdf energies_scatter.eps')
Ejemplo n.º 33
0
def train_images(images, HL, E_conv):
    Hidden_Layer=tuple(HL)
    calc = Amp(descriptor=Gaussian(), model=NeuralNetwork(hiddenlayers=Hidden_Layer))
    calc.model.lossfunction = LossFunction(convergence={'energy_rmse': E_conv})
    #calc.model.lossfunction = LossFunction(force_coefficient=-0.1)
    calc.train(images=images, overwrite=True)
def test():
    images = generate_data(2)
    regressor = Regressor(optimizer='BFGS')

    calc = Amp(descriptor=Gaussian(),
               model=NeuralNetwork(hiddenlayers=(3, 3),
                                   regressor=regressor,),
               cores=1)

    step = 0
    for d in [None, 0.00001]:
        for fortran in [True, False]:
            for cores in [1, 2]:
                step += 1
                label = \
                    'numeric_analytic_test/analytic-%s-%i' % (fortran, cores) \
                    if d is None \
                    else 'numeric_analytic_test/numeric-%s-%i' \
                    % (fortran, cores)
                print(label)

                loss = LossFunction(convergence={'energy_rmse': 10 ** 10,
                                                 'force_rmse': 10 ** 10},
                                    d=d)
                calc.set_label(label)
                calc.dblabel = 'numeric_analytic_test/analytic-True-1'
                calc.model.lossfunction = loss
                calc.descriptor.fortran = fortran
                calc.model.fortran = fortran
                calc.cores = cores

                calc.train(images=images,)

                if step == 1:
                    ref_energies = []
                    ref_forces = []
                    for image in images:
                        ref_energies += [calc.get_potential_energy(image)]
                        ref_forces += [calc.get_forces(image)]
                        ref_dloss_dparameters = \
                            calc.model.lossfunction.dloss_dparameters
                else:
                    energies = []
                    forces = []
                    for image in images:
                        energies += [calc.get_potential_energy(image)]
                        forces += [calc.get_forces(image)]
                        dloss_dparameters = \
                            calc.model.lossfunction.dloss_dparameters

                    for image_no in range(2):

                        diff = abs(energies[image_no] - ref_energies[image_no])
                        assert (diff < 10.**(-13.)), \
                            'The calculated value of energy of image %i is ' \
                            'wrong!' % (image_no + 1)

                        for atom_no in range(6):
                            for i in range(3):
                                diff = abs(forces[image_no][atom_no][i] -
                                           ref_forces[image_no][atom_no][i])
                                assert (diff < 10.**(-10.)), \
                                    'The calculated %i force of atom %i of ' \
                                    'image %i is wrong!' \
                                    % (i, atom_no, image_no + 1)
                        # Checks analytical and numerical dloss_dparameters
                        for _ in range(len(ref_dloss_dparameters)):
                            diff = abs(dloss_dparameters[_] -
                                       ref_dloss_dparameters[_])
                            assert(diff < 10 ** (-10.)), \
                                'The calculated value of loss function ' \
                                'derivative is wrong!'
    # Checks analytical and numerical forces
    forces = []
    for image in images:
        image.set_calculator(calc)
        forces += [calc.calculate_numerical_forces(image, d=d)]
    for atom_no in range(6):
        for i in range(3):
            diff = abs(forces[image_no][atom_no][i] -
                       ref_forces[image_no][atom_no][i])
            assert (diff < 10.**(-9.)), \
                'The calculated %i force of atom %i of ' \
                'image %i is wrong!' % (i, atom_no, image_no + 1)
Ejemplo n.º 35
0
#!/usr/bin/env python
from amp import Amp
from amp.descriptor import *
from amp.regression import *

calc = Amp(label="./",
           descriptor=Behler(cutoff=6.0),
           regression=NeuralNetwork(hiddenlayers=(2, 3)))

calc.train(
    "../train.db",  # The training data
    cores=1,
    global_search=None,  # not found the simulated annealing feature useful
    extend_variables=False)  # feature does not work properly and will crash
Ejemplo n.º 36
0
def periodic_0th_bfgs_step_test():
    """Gaussian/Neural training periodic standard test.

    Compares results to that expected from separate mathematica
    calculations.
    """

    # Making the list of images

    images = [
        Atoms(symbols='PdOPd',
              pbc=np.array([True, False, False], dtype=bool),
              cell=np.array([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]),
              positions=np.array([[0.5, 1., 0.5], [1., 0.5, 1.],
                                  [1.5, 1.5, 1.5]])),
        Atoms(symbols='PdO',
              pbc=np.array([True, True, False], dtype=bool),
              cell=np.array([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]),
              positions=np.array([[0.5, 1., 0.5], [1., 0.5, 1.]])),
        Atoms(symbols='Cu',
              pbc=np.array([True, True, False], dtype=bool),
              cell=np.array([[1.8, 0., 0.], [0., 1.8, 0.], [0., 0., 1.8]]),
              positions=np.array([[0., 0., 0.]]))
    ]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    # Parameters

    Gs = {
        'O': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }],
        'Pd': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.2
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.9,
            'gamma': 0.75,
            'zeta': 1.5
        }],
        'Cu': [{
            'type': 'G2',
            'element': 'Cu',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Cu', 'Cu'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }]
    }

    hiddenlayers = {'O': (2, ), 'Pd': (2, ), 'Cu': (2, )}

    weights = OrderedDict([
        ('O',
         OrderedDict([(1, np.matrix([[-2.0, 6.0], [3.0, -3.0], [1.5, -0.9]])),
                      (2, np.matrix([[5.5], [3.6], [1.4]]))])),
        ('Pd',
         OrderedDict([(1, np.matrix([[-1.0, 3.0], [2.0, 4.2], [1.0, -0.7]])),
                      (2, np.matrix([[4.0], [0.5], [3.0]]))])),
        ('Cu',
         OrderedDict([(1, np.matrix([[0.0, 1.0], [-1.0, -2.0], [2.5, -1.9]])),
                      (2, np.matrix([[0.5], [1.6], [-1.4]]))]))
    ])

    scalings = OrderedDict([
        ('O', OrderedDict([('intercept', -2.3), ('slope', 4.5)])),
        ('Pd', OrderedDict([('intercept', 1.6), ('slope', 2.5)])),
        ('Cu', OrderedDict([('intercept', -0.3), ('slope', -0.5)]))
    ])

    # Correct values
    if aseversion < 12:  # EMT values have changed from 3.12.0 version
        ref_loss = 8004.292841411172
        ref_energyloss = (43.7360019403031**2.) * 3
        ref_forceloss = (137.40994760947325**2.) * 3
        ref_dloss_dparameters = np.array([
            0.08141668748130322, 0.03231235582925534, 0.04388650395738586,
            0.017417514465922313, 0.028431276597563077, 0.011283700608814465,
            0.0941695726576061, -0.12322258890990219, 0.12679918754154568,
            63.53960075374332, 0.01624770019548904, -86.6263955859162,
            -0.01777752828707744, 86.22415217526024, 0.017745913074496918,
            104.58358033298292, -96.73280209888215, -99.09843648905876,
            -8.302880631972338, -1.2590007162074357, 8.302877346883133,
            1.25875988418134, -8.302866610678247, -1.2563833805675353,
            28.324298392680998, 28.093155094726413, -29.37874455931869,
            -11.247473567044866, 11.119951466664787, -87.08582317481387,
            -20.939485239182346, -125.73267675705365, -35.138524407482116
        ])
    else:
        ref_loss = 8004.287750978173
        ref_energyloss = (43.73598563177581**2.) * 3
        ref_forceloss = (137.409923023214**2.) * 3
        ref_dloss_dparameters = np.array([
            0.08141663280688925, 0.03231233413027478, 0.043886474485922956,
            0.01741750276939638, 0.02843125750487539, 0.011283693031378718,
            0.09416950941914284, -0.12322250616122936, 0.1267991023910503,
            63.53958764057119, 0.016247696749304368, -86.62637753054923,
            -0.01777752451341436, 86.22413420485914, 0.01774590930723711,
            104.58353326982777, -96.73275667196937, -99.09839026204304,
            -8.302877823431269, -1.2590002903842232, 8.302874538343092,
            1.2587594584335775, -8.302863802141216, -1.2563829555383859,
            28.32428881173613, 28.093145591893936, -29.37873462156934,
            -11.24746601393696, 11.11994399919284, -87.08579155328007,
            -20.93947792122797, -125.73262989900473, -35.13850819392253
        ])

    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for fortran in [False, True]:
        for cores in range(1, 4):
            label = 'train-periodic/%s-%i' % (fortran, cores)
            print(label)
            calc = Amp(descriptor=Gaussian(
                cutoff=4.,
                Gs=Gs,
                fortran=fortran,
            ),
                       model=NeuralNetwork(
                           hiddenlayers=hiddenlayers,
                           weights=weights,
                           scalings=scalings,
                           activation='tanh',
                           regressor=regressor,
                           fortran=fortran,
                       ),
                       label=label,
                       dblabel=label,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images, )
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            print("diff at 414 =", diff)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-9.)), \
                'Calculated value of force RMSE is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-10.)), \
                    'Calculated value of loss function derivative is wrong!'

            dblabel = label
            secondlabel = '_' + label

            calc = Amp(descriptor=Gaussian(cutoff=4., Gs=Gs, fortran=fortran),
                       model=NeuralNetwork(
                           hiddenlayers=hiddenlayers,
                           weights=weights,
                           scalings=scalings,
                           activation='tanh',
                           regressor=regressor,
                           fortran=fortran,
                       ),
                       label=secondlabel,
                       dblabel=dblabel,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images, )
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-9.)), \
                'Calculated value of force RMSE is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-10.)), \
                    'Calculated value of loss function derivative is wrong!'
Ejemplo n.º 37
0
def test():

    images = make_training_images()

    for descriptor in [None, Gaussian()]:
        for global_search in [
                None, SimulatedAnnealing(temperature=10, steps=5)
        ]:
            for data_format in ['json', 'db']:
                for save_memory in [
                        False,
                ]:
                    for fortran in [False, True]:
                        for cores in range(1, 4):

                            print(descriptor, global_search, data_format,
                                  save_memory, fortran, cores)

                            pwd = os.getcwd()
                            testdir = 'read_write_test'
                            os.mkdir(testdir)
                            os.chdir(testdir)

                            regression = NeuralNetwork(hiddenlayers=(
                                5,
                                5,
                            ))

                            calc = Amp(
                                label='calc',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with new variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            # Test that we cannot overwrite. (Strange code
                            # here because we *want* it to raise an
                            # exception...)
                            try:
                                calc.train(
                                    images,
                                    energy_goal=0.01,
                                    force_goal=10.,
                                    global_search=global_search,
                                    extend_variables=True,
                                    data_format=data_format,
                                    save_memory=save_memory,
                                    cores=cores,
                                )
                            except IOError:
                                pass
                            else:
                                raise RuntimeError(
                                    'Code allowed to overwrite!')

                            # Test that we can manually overwrite.
                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                overwrite=True,
                                cores=cores,
                            )

                            label = 'testdir'
                            if not os.path.exists(label):
                                os.mkdir(label)

                            # New directory calculator.
                            calc = Amp(
                                label='testdir/calc',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with new variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            # Open existing, save under new name.
                            calc = Amp(
                                load='calc',
                                label='calc2',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            label = 'calc_new'
                            if not os.path.exists(label):
                                os.mkdir(label)

                            # Change label and re-train
                            calc.set_label('calc_new/calc')
                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            # Open existing without specifying new name.
                            calc = Amp(
                                load='calc',
                                descriptor=descriptor,
                                regression=regression,
                                fortran=fortran,
                            )

                            # Should start with existing variables
                            calc.train(
                                images,
                                energy_goal=0.01,
                                force_goal=10.,
                                global_search=global_search,
                                extend_variables=True,
                                data_format=data_format,
                                save_memory=save_memory,
                                cores=cores,
                            )

                            os.chdir(pwd)
                            shutil.rmtree(testdir, ignore_errors=True)
                            del calc, regression
Ejemplo n.º 38
0
def periodic_0th_bfgs_step_test():

    ###########################################################################
    # Making the list of images

    images = [
        Atoms(symbols='PdOPd',
              pbc=np.array([True, False, False], dtype=bool),
              cell=np.array([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]),
              positions=np.array([[0.5, 1., 0.5], [1., 0.5, 1.],
                                  [1.5, 1.5, 1.5]])),
        Atoms(symbols='PdO',
              pbc=np.array([True, True, False], dtype=bool),
              cell=np.array([[2., 0., 0.], [0., 2., 0.], [0., 0., 2.]]),
              positions=np.array([[0.5, 1., 0.5], [1., 0.5, 1.]])),
        Atoms(symbols='Cu',
              pbc=np.array([True, True, False], dtype=bool),
              cell=np.array([[1.8, 0., 0.], [0., 1.8, 0.], [0., 0., 1.8]]),
              positions=np.array([[0., 0., 0.]]))
    ]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    ###########################################################################
    # Parameters

    Gs = {
        'O': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['O', 'Pd'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }],
        'Pd': [{
            'type': 'G2',
            'element': 'Pd',
            'eta': 0.2
        }, {
            'type': 'G4',
            'elements': ['Pd', 'Pd'],
            'eta': 0.9,
            'gamma': 0.75,
            'zeta': 1.5
        }],
        'Cu': [{
            'type': 'G2',
            'element': 'Cu',
            'eta': 0.8
        }, {
            'type': 'G4',
            'elements': ['Cu', 'Cu'],
            'eta': 0.3,
            'gamma': 0.6,
            'zeta': 0.5
        }]
    }

    hiddenlayers = {'O': (2), 'Pd': (2), 'Cu': (2)}

    weights = OrderedDict([
        ('O',
         OrderedDict([(1, np.matrix([[-2.0, 6.0], [3.0, -3.0], [1.5, -0.9]])),
                      (2, np.matrix([[5.5], [3.6], [1.4]]))])),
        ('Pd',
         OrderedDict([(1, np.matrix([[-1.0, 3.0], [2.0, 4.2], [1.0, -0.7]])),
                      (2, np.matrix([[4.0], [0.5], [3.0]]))])),
        ('Cu',
         OrderedDict([(1, np.matrix([[0.0, 1.0], [-1.0, -2.0], [2.5, -1.9]])),
                      (2, np.matrix([[0.5], [1.6], [-1.4]]))]))
    ])

    scalings = OrderedDict([
        ('O', OrderedDict([('intercept', -2.3), ('slope', 4.5)])),
        ('Pd', OrderedDict([('intercept', 1.6), ('slope', 2.5)])),
        ('Cu', OrderedDict([('intercept', -0.3), ('slope', -0.5)]))
    ])

    ###########################################################################
    # Correct values

    correct_cost = 8004.292841472513
    correct_energy_rmse = 43.736001940333836
    correct_force_rmse = 137.4099476110887
    correct_der_cost_fxn = [
        0.0814166874813534, 0.03231235582927526, 0.04388650395741291,
        0.017417514465933048, 0.0284312765975806, 0.011283700608821421,
        0.09416957265766414, -0.12322258890997816, 0.12679918754162384,
        63.5396007548815, 0.016247700195771732, -86.62639558745185,
        -0.017777528287386473, 86.22415217678898, 0.017745913074805372,
        104.58358033260711, -96.7328020983672, -99.09843648854351,
        -8.302880631971407, -1.2590007162073242, 8.3028773468822,
        1.258759884181224, -8.302866610677315, -1.2563833805673688,
        28.324298392677846, 28.09315509472324, -29.378744559315365,
        -11.247473567051799, 11.119951466671642, -87.08582317485761,
        -20.93948523898559, -125.73267675714658, -35.13852440758523
    ]

    ###########################################################################
    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for global_search in [None, 'SA']:
        for fortran in [False, True]:
            for extend_variables in [False, True]:
                for data_format in ['db', 'json']:
                    for save_memory in [False]:
                        for cores in range(1, 5):

                            string = 'CuOPdbp/2/%s-%s-%s-%s-%s-%i'
                            label = string % (global_search, fortran,
                                              extend_variables, data_format,
                                              save_memory, cores)

                            if global_search is 'SA':
                                gs = \
                                    SimulatedAnnealing(temperature=10, steps=5)
                            elif global_search is None:
                                gs = None

                            print label

                            calc = Amp(descriptor=Gaussian(cutoff=4., Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='tanh',
                                       ),
                                       fortran=fortran,
                                       label=label)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-7.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) < 10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-8.)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):
                                assert(abs(calc.der_variables_cost_function[
                                    _] -
                                    correct_der_cost_fxn[_]) < 10 ** (-8)), \
                                    'The calculated value of cost function \
                                   derivative is wrong!'

                            dblabel = label
                            secondlabel = '_' + label

                            calc = Amp(descriptor=Gaussian(cutoff=4., Gs=Gs),
                                       regression=NeuralNetwork(
                                           hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='tanh',
                                       ),
                                       fortran=fortran,
                                       label=secondlabel,
                                       dblabel=dblabel)

                            calc.train(images=images,
                                       energy_goal=10.**10.,
                                       force_goal=10.**10,
                                       force_coefficient=0.04,
                                       cores=cores,
                                       data_format=data_format,
                                       save_memory=save_memory,
                                       global_search=gs,
                                       extend_variables=extend_variables)

                            assert (abs(calc.cost_function - correct_cost) <
                                    10.**(-7.)), \
                                'The calculated value of cost function is \
                                wrong!'

                            assert (abs(calc.energy_per_atom_rmse -
                                        correct_energy_rmse) < 10.**(-10.)), \
                                'The calculated value of energy per atom RMSE \
                            is wrong!'

                            assert (abs(calc.force_rmse - correct_force_rmse) <
                                    10 ** (-8.)), \
                                'The calculated value of force RMSE is wrong!'

                            for _ in range(len(correct_der_cost_fxn)):
                                assert(abs(calc.der_variables_cost_function[
                                    _] -
                                    correct_der_cost_fxn[_] < 10 ** (-8))), \
                                    'The calculated value of cost function \
def periodic_0th_bfgs_step_test():

    # Making the list of images

    images = [Atoms(symbols='PdOPd',
                    pbc=np.array([True, False, False], dtype=bool),
                    cell=np.array(
                        [[2.,  0.,  0.],
                         [0.,  2.,  0.],
                         [0.,  0.,  2.]]),
                    positions=np.array(
                        [[0.5,  1., 0.5],
                         [1.,  0.5,  1.],
                         [1.5,  1.5,  1.5]])),
              Atoms(symbols='PdO',
                    pbc=np.array([True, True, False], dtype=bool),
                    cell=np.array(
                        [[2.,  0.,  0.],
                         [0.,  2.,  0.],
                            [0.,  0.,  2.]]),
                    positions=np.array(
                        [[0.5,  1., 0.5],
                         [1.,  0.5,  1.]])),
              Atoms(symbols='Cu',
                    pbc=np.array([True, True, False], dtype=bool),
                    cell=np.array(
                        [[1.8,  0.,  0.],
                         [0.,  1.8,  0.],
                            [0.,  0.,  1.8]]),
                    positions=np.array(
                        [[0.,  0., 0.]]))]

    for image in images:
        image.set_calculator(EMT())
        image.get_potential_energy(apply_constraint=False)
        image.get_forces(apply_constraint=False)

    # Parameters

    Gs = {'O': [{'type': 'G2', 'element': 'Pd', 'eta': 0.8},
                {'type': 'G4', 'elements': ['O', 'Pd'], 'eta':0.3, 'gamma':0.6,
                 'zeta':0.5}],
          'Pd': [{'type': 'G2', 'element': 'Pd', 'eta': 0.2},
                 {'type': 'G4', 'elements': ['Pd', 'Pd'],
                  'eta':0.9, 'gamma':0.75, 'zeta':1.5}],
          'Cu': [{'type': 'G2', 'element': 'Cu', 'eta': 0.8},
                 {'type': 'G4', 'elements': ['Cu', 'Cu'], 'eta':0.3,
                          'gamma':0.6, 'zeta':0.5}]}

    hiddenlayers = {'O': (2,), 'Pd': (2,), 'Cu': (2,)}

    weights = OrderedDict([('O', OrderedDict([(1, np.matrix([[-2.0, 6.0],
                                                             [3.0, -3.0],
                                                             [1.5, -0.9]])),
                                              (2, np.matrix([[5.5],
                                                             [3.6],
                                                             [1.4]]))])),
                           ('Pd', OrderedDict([(1, np.matrix([[-1.0, 3.0],
                                                              [2.0, 4.2],
                                                              [1.0, -0.7]])),
                                               (2, np.matrix([[4.0],
                                                              [0.5],
                                                              [3.0]]))])),
                           ('Cu', OrderedDict([(1, np.matrix([[0.0, 1.0],
                                                              [-1.0, -2.0],
                                                              [2.5, -1.9]])),
                                               (2, np.matrix([[0.5],
                                                              [1.6],
                                                              [-1.4]]))]))])

    scalings = OrderedDict([('O', OrderedDict([('intercept', -2.3),
                                               ('slope', 4.5)])),
                            ('Pd', OrderedDict([('intercept', 1.6),
                                                ('slope', 2.5)])),
                            ('Cu', OrderedDict([('intercept', -0.3),
                                                ('slope', -0.5)]))])

    # Correct values

    ref_loss = 8004.292841411172
    ref_energyloss = (43.7360019403031 ** 2.) * 3
    ref_forceloss = (137.40994760947325 ** 2.) * 3
    ref_dloss_dparameters = np.array([0.08141668748130322,
                                      0.03231235582925534,
                                      0.04388650395738586,
                                      0.017417514465922313,
                                      0.028431276597563077,
                                      0.011283700608814465,
                                      0.0941695726576061,
                                      -0.12322258890990219,
                                      0.12679918754154568,
                                      63.53960075374332,
                                      0.01624770019548904,
                                      -86.6263955859162,
                                      -0.01777752828707744,
                                      86.22415217526024,
                                      0.017745913074496918,
                                      104.58358033298292,
                                      -96.73280209888215,
                                      -99.09843648905876,
                                      -8.302880631972338,
                                      -1.2590007162074357,
                                      8.302877346883133,
                                      1.25875988418134,
                                      -8.302866610678247,
                                      -1.2563833805675353,
                                      28.324298392680998,
                                      28.093155094726413,
                                      -29.37874455931869,
                                      -11.247473567044866,
                                      11.119951466664787,
                                      -87.08582317481387,
                                      -20.939485239182346,
                                      -125.73267675705365,
                                      -35.138524407482116])

    # Testing pure-python and fortran versions of Gaussian-neural on different
    # number of processes

    for fortran in [False, True]:
        for cores in range(1, 4):
            label = 'train-periodic/%s-%i' % (fortran, cores)
            print label
            calc = Amp(descriptor=Gaussian(cutoff=4.,
                                           Gs=Gs,
                                           fortran=fortran,),
                       model=NeuralNetwork(hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='tanh',
                                           regressor=regressor,
                                           fortran=fortran,),
                       label=label,
                       dblabel=label,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images,)
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-9.)), \
                'Calculated value of force RMSE is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-10.)), \
                    'Calculated value of loss function derivative is wrong!'

            dblabel = label
            secondlabel = '_' + label

            calc = Amp(descriptor=Gaussian(cutoff=4.,
                                           Gs=Gs,
                                           fortran=fortran),
                       model=NeuralNetwork(hiddenlayers=hiddenlayers,
                                           weights=weights,
                                           scalings=scalings,
                                           activation='tanh',
                                           regressor=regressor,
                                           fortran=fortran,),
                       label=secondlabel,
                       dblabel=dblabel,
                       cores=cores)

            lossfunction = LossFunction(convergence=convergence)
            calc.model.lossfunction = lossfunction
            calc.train(images=images,)
            diff = abs(calc.model.lossfunction.loss - ref_loss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of loss function is wrong!'
            diff = abs(calc.model.lossfunction.energy_loss - ref_energyloss)
            assert (diff < 10.**(-10.)), \
                'Calculated value of energy per atom RMSE is wrong!'
            diff = abs(calc.model.lossfunction.force_loss - ref_forceloss)
            assert (diff < 10 ** (-9.)), \
                'Calculated value of force RMSE is wrong!'

            for _ in range(len(ref_dloss_dparameters)):
                diff = abs(calc.model.lossfunction.dloss_dparameters[_] -
                           ref_dloss_dparameters[_])
                assert(diff < 10 ** (-10.)), \
                    'Calculated value of loss function derivative is wrong!'