Ejemplo n.º 1
0
def deserialize_dispatch_seq(channel_ser):
    """Returns a list of list of channel pairs, as created by serialize dispatch_seq

    Parameters:
    ===========
    channel_ser: JSON serialization of the channel pairs

    Returns:
    ========
    List of list of channel pairs
    """

    dispatch_seq = []

    for pair_list in channel_ser:
        new_list = []
        for pair in pair_list:
            ch1 = channel(pair["ch1"]["dev"], pair["ch1"]["ch_v"],
                          pair["ch1"]["ch_h"])
            ch2 = channel(pair["ch2"]["dev"], pair["ch2"]["ch_v"],
                          pair["ch2"]["ch_h"])
            new_list.append(channel_pair(ch1, ch2))
        dispatch_seq.append(new_list)

    return dispatch_seq


# End of file backend.py
    def test_cross_phase(self):
        """compares output of cross_phase fluctana routine to output from
           cross_phase diagnostic kernel"""
        def cross_phase_rmc():
            #import sys, os
            #sys.path.append(os.pardir)
            sys.path.append("/global/homes/r/rkube/repos/fluctana_rmc")
            from fluctana import FluctAna, KstarEcei

            # HOW TO RUN
            # ./python3 check_correlation.py 10186 [15.9,16] ECEI_L1303 ECEI_L1403
            shot = 18431
            trange = [-0.1, -0.08]
            clist = [['ECEI_L1102'], ['ECEI_L0906']]

            # call fluctana
            A = FluctAna()

            # add data
            A.add_data(KstarEcei(
                shot=shot,
                clist=clist[0],
                data_path='/global/cscratch1/sd/rkube/KSTAR/kstar_streaming/'),
                       trange=trange,
                       norm=1)
            A.add_data(KstarEcei(
                shot=shot,
                clist=clist[1],
                data_path='/global/cscratch1/sd/rkube/KSTAR/kstar_streaming/'),
                       trange=trange,
                       norm=1)

            # do fft; full = 1
            A.fftbins(nfft=512, window='hann', overlap=0.5, detrend=1, full=1)

            # calculate correlation using data sets done and dtwo. results are saved in A.Dlist[dtwo].val
            A.cross_phase(done=0, dtwo=1)
            return (A)

        A = cross_phase_rmc()
        # Call the diagnostic kernel
        ch_it = [channel_pair(self._ch1, self._ch2)]
        res, _ = cross_phase(self._fft_data, ch_it,
                             self._config_fft["fft_params"], None)
        res = np.squeeze(res)
        self.assertTrue(
            np.linalg.norm(A.Dlist[1].val[0][1:] - res) /
            np.linalg.norm(res) < 512)
Ejemplo n.º 3
0
    def __init__(self, task_config, fft_config, ecei_config):
        """Initialize the object with a fixed channel list, a fixed name of the analysis to be performed
        and a fixed set of parameters for the analysis routine.

        Inputs:
        =======
        channel_range: list of strings, defines the name of the channels. This should probably match the
                      name of the channels in the BP file.
        task_config: dict, defines parameters of the analysis to be performed
        fft_config dict, gives parameters of the fourier-transformed data
        """

        # Stores the description of the task. This can be arbitrary
        self.description = task_config["description"]
        # Stores the name of the analysis we are going to execute
        self.analysis = task_config["analysis"]

        # Parse the reference and cross channels.
        self.ref_channels = channel_range.from_str(task_config["ref_channels"])
        # These channels serve as the cross-data for the spectral diagnostics
        self.cmp_channels = channel_range.from_str(task_config["cmp_channels"])

        self.task_config = task_config
        self.fft_config = fft_config
        self.ecei_config = ecei_config

        self.storage_scheme = {
            "ref_channels": self.ref_channels.to_str(),
            "cmp_channels": self.cmp_channels.to_str()
        }

        # Construct a list of unique channels
        # F.ex. we have ref_channels [(1,1), (1,2), (1,3)] and cmp_channels = [(1,1), (1,2)]
        # The unique list of channels is then
        # (1,1) x (1,1), (1,1) x (1,2)
        # (1,2) x (1,2) !!! Omit (1,2) x (1,1)
        # (1,3) x (1,1)
        # (1,3) x (1,2)
        channel_pairs = [
            channel_pair(cr, cx) for cr in self.ref_channels
            for cx in self.cmp_channels
        ]
        # Make a list, so that we don't exhause the iterator after the first call.
        self.unique_channels = list(
            more_itertools.distinct_combinations(channel_pairs, 1))
        self.channel_chunk_size = task_config["channel_chunk_size"]
Ejemplo n.º 4
0
    def __init__(self, task_config, fft_config, ecei_config, storage_config):
        """Initialize the object with a fixed channel list, a fixed name of the analysis to be performed
        and a fixed set of parameters for the analysis routine.

        Inputs:
        =======
        task_config: dict, defines parameters of the analysis to be performed
        fft_config: dict, gives parameters of the fourier-transformed data
        ecei_config: dict, information on ecei diagnostic
        """

        self.task_config = task_config
        self.ecei_config = ecei_config
        self.storage_config = storage_config
        self.logger = logging.getLogger("simple")


        # Stores the description of the task. This can be arbitrary
        self.description = task_config["task_description"]
        # Stores the name of the analysis we are going to execute
        self.analysis = task_config["analysis"]

        if self.analysis == "cross_phase":
            self.kernel = kernel_crossphase_64_cy
        elif self.analysis == "cross_power":
            self.kernel = kernel_crosspower_64_cy
        elif self.analysis == "cross_correlation":
            self.kernel = kernel_crosscorr
        elif self.analysis == "coherence":
            self.kernel = kernel_coherence_64_cy
        elif self.analysis == "skw":
            self.kernel = kernel_skw
        elif self.analysis == "bicoherence":
            self.kernel = kernel_bicoherence
        elif self.analysis == "null":
            self.kernel = kernel_null
        else:
            raise NameError(f"Unknown analysis task {self.analysis}")
        

        # Parse the reference and cross channels.
        self.ref_channels = channel_range.from_str(task_config["ref_channels"])
        # These channels serve as the cross-data for the spectral diagnostics
        self.cmp_channels = channel_range.from_str(task_config["cmp_channels"])

        # Construct a list of unique channels
        # F.ex. we have ref_channels [(1,1), (1,2), (1,3)] and cmp_channels = [(1,1), (1,2)]
        # The unique list of channels is then
        # (1,1) x (1,1), (1,1) x (1,2)
        # (1,2) x (1,2) !!! Omits (1,2) x (1,1)
        # (1,3) x (1,1)
        # (1,3) x (1,2)
        channel_pairs = [channel_pair(cr, cx) for cr in self.ref_channels for cx in self.cmp_channels]
        # Make a list, so that we don't exhaust the iterator after the first call.
        self.unique_channels = [i[0] for i in more_itertools.distinct_combinations(channel_pairs, 1)]
        # Number of channel pairs per future
        self.channel_chunk_size = task_config["channel_chunk_size"]
        # Total number of chunks, i.e. the number of futures appended to the list per call to calculate
        self.num_chunks = (len(self.unique_channels) + self.channel_chunk_size - 1) // self.channel_chunk_size

        # Get the configuration from task_fft_scipy, but don't store the object.
        fft_config["fsample"] = ecei_config["SampleRate"] * 1e3
        self.my_fft = task_fft_scipy(self.channel_chunk_size, fft_config, normalize=True, detrend=True)
        self.fft_params = self.my_fft.get_fft_params()

        self.storage_backend = None
        if self.storage_config["backend"] == "numpy":
            self.storage_backend = backends.backend_numpy(self.storage_config)
        elif self.storage_config["backend"] == "mongo":
            self.storage_backend = backends.backend_mongodb(self.storage_config)
        elif self.storage_config["backend"] == "null":
            self.storage_backend = backends.backend_null(self.storage_config)
        else:
            raise NameError(f"Unknown storage backend requested: {self.storage_config}")

        self.storage_backend.store_metadata(self.task_config, self.get_dispatch_sequence())
Ejemplo n.º 5
0
    def test_results(self):
        def fftbins(x, dt, nfft, window, overlap, do_detrend, full):
            # IN : 1 x tnum data
            # OUT : bins x faxis fftdata
            tnum = len(x)

            bins = int(np.fix((int(tnum / nfft) - overlap) / (1.0 - overlap)))
            win = np.hanning(nfft)
            #bins, win = fft_window(tnum, nfft, window, overlap)
            win_factor = np.mean(win**2)  # window factors
            print("***fftbins: win_factor = {0:f}".format(win_factor))

            # make an x-axis #
            ax = np.fft.fftfreq(nfft, d=dt)  # full 0~fN -fN~-f1
            if np.mod(nfft, 2) == 0:  # even nfft
                ax = np.hstack([
                    ax[0:int(nfft / 2)], -(ax[int(nfft / 2)]),
                    ax[int(nfft / 2):nfft]
                ])
            if full == 1:  # full shift to -fN ~ 0 ~ fN
                ax = np.fft.fftshift(ax)
            else:  # half 0~fN
                ax = ax[0:int(nfft / 2 + 1)]

            # make fftdata
            if full == 1:  # full shift to -fN ~ 0 ~ fN
                if np.mod(nfft, 2) == 0:  # even nfft
                    fftdata = np.zeros((bins, nfft + 1), dtype=np.complex_)
                else:  # odd nfft
                    fftdata = np.zeros((bins, nfft), dtype=np.complex_)
            else:  # half 0 ~ fN
                fftdata = np.zeros((bins, int(nfft / 2 + 1)),
                                   dtype=np.complex_)

            for b in range(bins):
                idx1 = int(b * np.fix(nfft * (1 - overlap)))
                idx2 = idx1 + nfft
                #print("***bin {0:d}, idx1 = {1:d}, idx2 = {2:d}".format(b, idx1, idx2))

                sx = x[idx1:idx2]

                if do_detrend == 1:
                    sx = detrend(sx, type='linear')
                sx = detrend(sx, type='constant')  # subtract mean
                sx = sx * win  # apply window function

                # get fft
                SX = np.fft.fft(sx, n=nfft) / nfft  # divide by the length
                if np.mod(nfft, 2) == 0:  # even nfft
                    SX = np.hstack([
                        SX[0:int(nfft / 2)],
                        np.conj(SX[int(nfft / 2)]), SX[int(nfft / 2):nfft]
                    ])
                if full == 1:  # shift to -fN ~ 0 ~ fN
                    SX = np.fft.fftshift(SX)
                else:  # half 0 ~ fN
                    SX = SX[0:int(nfft / 2 + 1)]

                fftdata[b, :] = SX

            return ax, fftdata, win_factor

        def test_rmc():
            sys.path.append("/global/homes/r/rkube/repos/fluctana_rmc")
            from fluctana import FluctAna, KstarEcei

            # HOW TO RUN
            # ./python3 check_correlation.py 10186 [15.9,16] ECEI_L1303 ECEI_L1403
            shot = 18431
            trange = [-0.1, -0.08]
            clist = [['ECEI_L1102'], ['ECEI_L0906']]

            # call fluctana
            A = FluctAna()

            # add data
            A.add_data(KstarEcei(
                shot=shot,
                clist=clist[0],
                data_path='/global/cscratch1/sd/rkube/KSTAR/kstar_streaming/'),
                       trange=trange,
                       norm=1)
            A.add_data(KstarEcei(
                shot=shot,
                clist=clist[1],
                data_path='/global/cscratch1/sd/rkube/KSTAR/kstar_streaming/'),
                       trange=trange,
                       norm=1)

            # list data
            A.list_data()

            # do fft; full = 1
            A.fftbins(nfft=512, window='hann', overlap=0.5, detrend=0, full=1)

            # calculate correlation using data sets done and dtwo. results are saved in A.Dlist[dtwo].val
            A.correlation(done=0, dtwo=1)

            # plot the results; dnum = data set number, cnl = channel number list to plot
            #A.mplot(dnum=1,cnl=range(len(A.Dlist[1].clist)),type='val')

            return (A)

        tic = timeit.default_timer()
        A = test_rmc()
        toc = timeit.default_timer()

        print(f"Fluctana takes {(toc - tic):6.4f}s")

        L1102_fa = np.squeeze(A.Dlist[0].data)
        L1102_ax, L1102_ft, win_factor = fftbins(L1102_fa,
                                                 dt=2e-6,
                                                 nfft=512,
                                                 window="hann",
                                                 overlap=0.5,
                                                 do_detrend=1,
                                                 full=1)

        print(L1102_ft.shape)

        L0906_fa = np.squeeze(A.Dlist[1].data)
        L0906ax, L0906_ft, win_factor = fftbins(L0906_fa,
                                                dt=2e-6,
                                                nfft=512,
                                                window="hann",
                                                overlap=0.5,
                                                do_detrend=1,
                                                full=1)

        ################################################################################################################
        #
        #    Set up for distributed analysis
        #
        ################################################################################################################
        c1 = channel('L', 11, 2)
        c2 = channel('L', 9, 6)

        print("Channel 1: ", c1, ", idx = ", c1.idx())
        print("Channel 2: ", c2, ", idx = ", c2.idx())

        with np.load("test_data/io_array_tr_s0001.npz") as df:
            # Load transformed data, as generated by datareader
            io_array_tr = df["io_array"]
            print("io_array_tr.shape = ", io_array_tr.shape)

        print("io_array_tr.shape = ", io_array_tr.shape)
        print(f"Channel idx for {c1}: {c1.idx()}, {c2}: {c2.idx()}")

        with open("tests_analysis/config_fft.json", "r") as df:
            config_fft = json.load(df)

        config_fft["fft_params"][
            "fsample"] = config_fft["ECEI_cfg"]["SampleRate"] * 1e3
        config_fft["fft_params"]["nfft"] = 512

        win = get_window(config_fft["fft_params"]["window"],
                         config_fft["fft_params"]["nfft"])
        win_factor = (win**2).mean()
        print(f"win_Factor = {win_factor}")

        config_fft["fft_params"]["win_factor"] = win_factor

        my_fft = task_fft_scipy(10_000,
                                config_fft["fft_params"],
                                normalize=True,
                                detrend=True)
        fft_data = my_fft.do_fft_local(io_array_tr)

        assert (np.linalg.norm(io_array_tr[c1.idx(), :] - L1102_fa) /
                np.linalg.norm(L1102_fa) < 1e-6)
        assert (np.linalg.norm(io_array_tr[c2.idx(), :] - L0906_fa) /
                np.linalg.norm(L0906_fa) < 1e-6)

        # Call the
        ch_it = [channel_pair(c1, c2)]
        res, _ = cross_corr(fft_data, ch_it, config_fft["fft_params"], None)
        res = np.squeeze(res)

        assert (np.linalg.norm(A.Dlist[1].val[0][1:] - res * 128) /
                np.linalg.norm(res) < 512)
Ejemplo n.º 6
0
def test_answer():
    print(
        "Check that the mapping from v and h to a linear channel number is correct"
    )
    ch_idx = 1
    for vv in range(1, 25):
        for hh in range(1, 9):
            assert (channels.ch_num_to_vh(ch_idx) == (vv, hh))
            assert (channels.ch_vh_to_num(vv, hh) == ch_idx)

            ch_idx += 1

    assert (ch_idx == 193)

    print("Testing channel.from_str()")
    for _ in range(50):
        dd_list = ['L', 'H', 'G', 'HT', 'GR', 'HR']
        dd = dd_list[np.random.randint(0, len(dd_list))]
        vv = np.random.randint(1, 25)
        hh = np.random.randint(1, 9)
        ch_str = f"{dd:s}{vv:02d}{hh:02d}"

        assert (channels.channel.from_str(ch_str) == channels.channel(
            dd, vv, hh))

    print("Testing serialization")
    for _ in range(50):
        dd_list = ['L', 'H', 'G', 'HT', 'GR', 'HR']
        dd = dd_list[np.random.randint(0, len(dd_list))]
        vv = np.random.randint(1, 25)
        hh = np.random.randint(1, 9)

        ch = channels.channel(dd, vv, hh)
        assert (ch == channels.channel.from_json(ch.to_json()))

    print("Testing equality functions of channel_pair")
    ch1 = channels.channel("G", 2, 3)
    ch2 = channels.channel("G", 4, 6)

    assert (channels.channel_pair(ch1, ch2) == channels.channel_pair(ch2, ch1))
    assert (hash(channels.channel_pair(ch1, ch2)) == hash(
        channels.channel_pair(ch2, ch1)))

    print("Testing channel pair serialization")

    for _ in range(50):
        dd_list = ['L', 'H', 'G', 'HT', 'GR', 'HR']
        dd = dd_list[np.random.randint(0, len(dd_list))]

        vv = np.random.randint(1, 25)
        hh = np.random.randint(1, 9)
        ch1 = channels.channel(dd, vv, hh)

        vv = np.random.randint(1, 25)
        hh = np.random.randint(1, 9)
        ch2 = channels.channel(dd, vv, hh)

        pair = channels.channel_pair(ch1, ch2)
        assert (channels.channel_pair.from_json(pair.to_json()) == pair)

    print("Testing channel_range")
    print("Linear selection:")

    vv, hh = channels.ch_num_to_vh(1)
    ch1 = channels.channel("L", vv, hh)
    vv, hh = channels.ch_num_to_vh(192)
    ch2 = channels.channel("L", vv, hh)

    crg = channels.channel_range(ch1, ch2, "linear")

    i = 1
    for c in crg:
        assert (c.idx() == i)
        i -= -1

    print("Testing sets of channel pairs")
    print(
        "Note that this test can fail if duplicate pairs are inserted in chpair_list"
    )
    print("upon generation")

    num_unq_pairs = 20
    # Generate random channel pairs
    ch1_list = [
        channels.channel("L", vv, hh)
        for vv, hh in zip(np.random.randint(1, 25, num_unq_pairs),
                          np.random.randint(1, 9, num_unq_pairs))
    ]

    ch2_list = [
        channels.channel("L", vv, hh)
        for vv, hh in zip(np.random.randint(1, 25, num_unq_pairs),
                          np.random.randint(1, 9, num_unq_pairs))
    ]
    chpair_list = [
        channels.channel_pair(ch1, ch2)
        for ch1, ch2 in zip(ch1_list, ch2_list)
    ]
    assert (len(chpair_list) == num_unq_pairs)

    # Now we add random duplicates
    num_duplicates = 0
    for _ in range(num_duplicates):
        # Select a random channel pair to duplicate. Note that len(chpair_list) increases in each
        # iteration as we append
        chidx = np.random.randint(0, len(chpair_list))
        # Append this channel pair to the list. Take a 50/50 chance to switch the channels too.
        ch2, ch1 = chpair_list[chidx]
        if np.random.randint(0, 2) == True:
            chpair_list.append(channels.channel_pair(ch2, ch1))
        else:
            chpair_list.append(channels.channel_pair(ch1, ch2))

    assert (len(chpair_list) == num_unq_pairs + num_duplicates)

    # Convert chpair_list, which includes 19 duplicates, to a set.
    chpair_set = set(chpair_list)
    assert (len(chpair_set) == num_unq_pairs)


# # Test iteration over channel ranges using unqiue channel pairs

# res = [channel_pair(c1, c2) for c1 in crg1 for c2 in crg2]
# # res contains duplicate paris, f.ex. (L0202, L0203) and (L0203, L0202)
# unq = unique_everseen(res)
# unq_list = list(unq)

# print("Non-unique: {0:d}, unique channel pairs: {1:d}".format(len(res), len(unq_list)))

# End of file test_channels.py
Ejemplo n.º 7
0
with np.load("/global/homes/r/rkube/repos/delta/test_data/fft_array_s0001.npz"
             ) as df:
    fft_data = df["fft_data"]

fft_data_64 = np.ascontiguousarray(fft_data)
fft_data_32 = np.require(fft_data_64,
                         dtype=np.complex64,
                         requirements=['A', 'C'])

###################################################
# Generate channels to iterate over

ref_chrg = channel_range.from_str("L0101-2408")
cmp_chrg = channel_range.from_str("L0101-2408")
channel_pairs = [channel_pair(cr, cx) for cr in ref_chrg for cx in cmp_chrg]
unique_channels = [
    i[0] for i in more_itertools.distinct_combinations(channel_pairs, 1)
]

#ch_it = [channel_pair(channel("L", i, 1), channel("L", i, 2)) for i in range(1, 25)]
#ch_it = ch_it + [channel_pair(channel("L", i, 1), channel("L", i, 3)) for i in range(1, 25)]
#h_it = ch_it + [channel_pair(channel("L", i, 1), channel("L", i, 4)) for i in range(1, 25)]
#ch_it = ch_it + [channel_pair(channel("L", i, 1), channel("L", i, 4)) for i in range(1, 25)]
#ch_it = ch_it + [channel_pair(channel("L", i, 1), channel("L", i, 5)) for i in range(1, 25)]
#ch_it = ch_it + [channel_pair(channel("L", i, 1), channel("L", i, 6)) for i in range(1, 25)]
#ch_it = ch_it + [channel_pair(channel("L", i, 1), channel("L", i, 7)) for i in range(1, 25)]
#ch_it = ch_it + [channel_pair(channel("L", i, 1), channel("L", i, 8)) for i in range(1, 25)]

ch1_idx_arr = np.array([int(ch_pair.ch1.idx()) for ch_pair in unique_channels],
                       dtype=np.uint64)
Ejemplo n.º 8
0
# Encoding: UTF-8
"""
Find out how to get a channel list from tget_dispatch_sequence
and pickle it
"""

import sys
sys.path.append("/global/homes/r/rkube/repos/delta")
import more_itertools
from itertools import chain

from analysis.channels import channel, channel_range, channel_pair

ref_channels = channel_range.from_str("L0101-2408")
cmp_channels = channel_range.from_str("L0101-2408")
channel_pairs = [
    channel_pair(ref, cmp) for ref in ref_channels for cmp in cmp_channels
]
unique_channels = list(more_itertools.distinct_combinations(channel_pairs, 1))

print("Number of channel pairs: {0:d}".format(len(channel_pairs)))
print("Unique channel paits: {0:d}".format(len(unique_channels)))

ch_list = [u[0] for u in unqiue_channels]

np.savez("dispatch_seq.npz", ch_list=ch_list)

# End of file test_channel_it.py