Ejemplo n.º 1
0
def analyse_ekf(
        ulog: ULog, check_levels: Dict[str, float], red_thresh: float = 1.0,
        amb_thresh: float = 0.5, min_flight_duration_seconds: float = 5.0,
        in_air_margin_seconds: float = 5.0, pos_checks_when_sensors_not_fused: bool = False) -> \
        Tuple[str, Dict[str, str], Dict[str, float], Dict[str, float]]:
    """
    :param ulog:
    :param check_levels:
    :param red_thresh:
    :param amb_thresh:
    :param min_flight_duration_seconds:
    :param in_air_margin_seconds:
    :param pos_checks_when_sensors_not_fused:
    :return:
    """

    try:
        estimator_status = ulog.get_dataset('estimator_status').data
        print('found estimator_status data')
    except:
        raise PreconditionError('could not find estimator_status data')

    try:
        _ = ulog.get_dataset('ekf2_innovations').data
        print('found ekf2_innovation data')
    except:
        raise PreconditionError('could not find ekf2_innovation data')

    try:
        in_air = InAirDetector(
            ulog, min_flight_time_seconds=min_flight_duration_seconds, in_air_margin_seconds=0.0)
        in_air_no_ground_effects = InAirDetector(
            ulog, min_flight_time_seconds=min_flight_duration_seconds,
            in_air_margin_seconds=in_air_margin_seconds)
    except Exception as e:
        raise PreconditionError(str(e))

    if in_air_no_ground_effects.take_off is None:
        raise PreconditionError('no airtime detected.')

    airtime_info = {
        'in_air_transition_time': round(in_air.take_off + in_air.log_start, 2),
        'on_ground_transition_time': round(in_air.landing + in_air.log_start, 2)}

    control_mode, innov_flags, gps_fail_flags = get_estimator_check_flags(estimator_status)

    sensor_checks, innov_fail_checks = find_checks_that_apply(
        control_mode, estimator_status,
        pos_checks_when_sensors_not_fused=pos_checks_when_sensors_not_fused)

    metrics = calculate_ecl_ekf_metrics(
        ulog, innov_flags, innov_fail_checks, sensor_checks, in_air, in_air_no_ground_effects,
        red_thresh=red_thresh, amb_thresh=amb_thresh)

    check_status, master_status = perform_ecl_ekf_checks(
        metrics, sensor_checks, innov_fail_checks, check_levels)

    return master_status, check_status, metrics, airtime_info
Ejemplo n.º 2
0
def analyse_ekf(
        ulog: ULog, check_levels: Dict[str, float], red_thresh: float = 1.0,
        amb_thresh: float = 0.5, min_flight_duration_seconds: float = 5.0,
        in_air_margin_seconds: float = 5.0, pos_checks_when_sensors_not_fused: bool = False) -> \
        Tuple[str, Dict[str, str], Dict[str, float], Dict[str, float]]:
    """
    :param ulog:
    :param check_levels:
    :param red_thresh:
    :param amb_thresh:
    :param min_flight_duration_seconds:
    :param in_air_margin_seconds:
    :param pos_checks_when_sensors_not_fused:
    :return:
    """

    try:
        estimator_states = ulog.get_dataset('estimator_states').data
        print('found estimator_states data')
    except:
        raise PreconditionError('could not find estimator_states data')

    try:
        estimator_status = ulog.get_dataset('estimator_status').data
        print('found estimator_status data')
    except:
        raise PreconditionError('could not find estimator_status data')

    try:
        _ = ulog.get_dataset('estimator_innovations').data
        print('found estimator_innovations data')
    except:
        raise PreconditionError('could not find estimator_innovations data')

    try:
        in_air = InAirDetector(
            ulog, min_flight_time_seconds=min_flight_duration_seconds, in_air_margin_seconds=0.0)
        in_air_no_ground_effects = InAirDetector(
            ulog, min_flight_time_seconds=min_flight_duration_seconds,
            in_air_margin_seconds=in_air_margin_seconds)
    except Exception as e:
        raise PreconditionError(str(e))

    if in_air_no_ground_effects.take_off is None:
        raise PreconditionError('no airtime detected.')

    airtime_info = {
        'in_air_transition_time': round(in_air.take_off + in_air.log_start, 2),
        'on_ground_transition_time': round(in_air.landing + in_air.log_start, 2)}

    control_mode, innov_flags, gps_fail_flags = get_estimator_check_flags(estimator_status)

    sensor_checks, innov_fail_checks = find_checks_that_apply(
        control_mode, estimator_status,
        pos_checks_when_sensors_not_fused=pos_checks_when_sensors_not_fused)

    metrics = calculate_ecl_ekf_metrics(
        ulog, innov_flags, innov_fail_checks, sensor_checks, in_air, in_air_no_ground_effects,
        red_thresh=red_thresh, amb_thresh=amb_thresh)

    check_status, master_status = perform_ecl_ekf_checks(
        metrics, sensor_checks, innov_fail_checks, check_levels)

    return master_status, check_status, metrics, airtime_info
Ejemplo n.º 3
0
def create_pdf_report(ulog: ULog, output_plot_filename: str) -> None:
    """
    creates a pdf report of the ekf analysis.
    :param ulog:
    :param output_plot_filename:
    :return:
    """

    # create summary plots
    # save the plots to PDF

    try:
        estimator_status = ulog.get_dataset('estimator_status').data
        print('found estimator_status data')
    except:
        raise PreconditionError('could not find estimator_status data')

    try:
        estimator_innovations = ulog.get_dataset('estimator_innovations').data
        estimator_innovation_variances = ulog.get_dataset(
            'estimator_innovation_variances').data
        innovation_data = estimator_innovations
        for key in estimator_innovation_variances:
            # append 'var' to the field name such that we can distingush between innov and innov_var
            innovation_data.update(
                {str('var_' + key): estimator_innovation_variances[key]})
        print('found innovation data')
    except:
        raise PreconditionError('could not find innovation data')

    try:
        sensor_preflight = ulog.get_dataset('sensor_preflight').data
        print('found sensor_preflight data')
    except:
        raise PreconditionError('could not find sensor_preflight data')

    control_mode, innov_flags, gps_fail_flags = get_estimator_check_flags(
        estimator_status)

    status_time = 1e-6 * estimator_status['timestamp']

    b_finishes_in_air, b_starts_in_air, in_air_duration, in_air_transition_time, \
    on_ground_transition_time = detect_airtime(control_mode, status_time)

    with PdfPages(output_plot_filename) as pdf_pages:

        # plot IMU consistency data
        if ('accel_inconsistency_m_s_s'
                in sensor_preflight.keys()) and ('gyro_inconsistency_rad_s'
                                                 in sensor_preflight.keys()):
            data_plot = TimeSeriesPlot(
                sensor_preflight,
                [['accel_inconsistency_m_s_s'], ['gyro_inconsistency_rad_s']],
                x_labels=['data index', 'data index'],
                y_labels=['acceleration (m/s/s)', 'angular rate (rad/s)'],
                plot_title='IMU Consistency Check Levels',
                pdf_handle=pdf_pages)
            data_plot.save()
            data_plot.close()

        # vertical velocity and position innovations
        data_plot = InnovationPlot(innovation_data,
                                   [('gps_vpos', 'var_gps_vpos'),
                                    ('gps_vvel', 'var_gps_vvel')],
                                   x_labels=['time (sec)', 'time (sec)'],
                                   y_labels=['Down Vel (m/s)', 'Down Pos (m)'],
                                   plot_title='Vertical Innovations',
                                   pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # horizontal velocity innovations
        data_plot = InnovationPlot(
            innovation_data, [('gps_hvel[0]', 'var_gps_hvel[0]'),
                              ('gps_hvel[1]', 'var_gps_hvel[1]')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['North Vel (m/s)', 'East Vel (m/s)'],
            plot_title='Horizontal Velocity  Innovations',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # horizontal position innovations
        data_plot = InnovationPlot(
            innovation_data, [('gps_hpos[0]', 'var_gps_hpos[0]'),
                              ('gps_hpos[1]', 'var_gps_hpos[1]')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['North Pos (m)', 'East Pos (m)'],
            plot_title='Horizontal Position Innovations',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # magnetometer innovations
        data_plot = InnovationPlot(
            innovation_data, [('mag_field[0]', 'var_mag_field[0]'),
                              ('mag_field[1]', 'var_mag_field[1]'),
                              ('mag_field[2]', 'var_mag_field[2]')],
            x_labels=['time (sec)', 'time (sec)', 'time (sec)'],
            y_labels=['X (Gauss)', 'Y (Gauss)', 'Z (Gauss)'],
            plot_title='Magnetometer Innovations',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # magnetic heading innovations
        data_plot = InnovationPlot(innovation_data,
                                   [('heading', 'var_heading')],
                                   x_labels=['time (sec)'],
                                   y_labels=['Heading (rad)'],
                                   plot_title='Magnetic Heading Innovations',
                                   pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # air data innovations
        data_plot = InnovationPlot(
            innovation_data, [('airspeed', 'var_airspeed'),
                              ('beta', 'var_beta')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['innovation (m/sec)', 'innovation (rad)'],
            sub_titles=[
                'True Airspeed Innovations', 'Synthetic Sideslip Innovations'
            ],
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # optical flow innovations
        data_plot = InnovationPlot(innovation_data,
                                   [('flow[0]', 'var_flow[0]'),
                                    ('flow[1]', 'var_flow[1]')],
                                   x_labels=['time (sec)', 'time (sec)'],
                                   y_labels=['X (rad/sec)', 'Y (rad/sec)'],
                                   plot_title='Optical Flow Innovations',
                                   pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # plot normalised innovation test levels
        # define variables to plot
        variables = [['mag_test_ratio'], ['vel_test_ratio', 'pos_test_ratio'],
                     ['hgt_test_ratio']]
        y_labels = ['mag', 'vel, pos', 'hgt']
        legend = [['mag'], ['vel', 'pos'], ['hgt']]
        if np.amax(estimator_status['hagl_test_ratio']
                   ) > 0.0:  # plot hagl test ratio, if applicable
            variables[-1].append('hagl_test_ratio')
            y_labels[-1] += ', hagl'
            legend[-1].append('hagl')

        if np.amax(estimator_status['tas_test_ratio']
                   ) > 0.0:  # plot airspeed sensor test ratio, if applicable
            variables.append(['tas_test_ratio'])
            y_labels.append('TAS')
            legend.append(['airspeed'])

        data_plot = CheckFlagsPlot(
            status_time,
            estimator_status,
            variables,
            x_label='time (sec)',
            y_labels=y_labels,
            plot_title='Normalised Innovation Test Levels',
            pdf_handle=pdf_pages,
            annotate=True,
            legend=legend)
        data_plot.save()
        data_plot.close()

        # plot control mode summary A
        data_plot = ControlModeSummaryPlot(
            status_time,
            control_mode,
            [['tilt_aligned', 'yaw_aligned'],
             ['using_gps', 'using_optflow', 'using_evpos'],
             ['using_barohgt', 'using_gpshgt', 'using_rnghgt', 'using_evhgt'],
             ['using_magyaw', 'using_mag3d', 'using_magdecl']],
            x_label='time (sec)',
            y_labels=['aligned', 'pos aiding', 'hgt aiding', 'mag aiding'],
            annotation_text=[['tilt alignment', 'yaw alignment'],
                             [
                                 'GPS aiding', 'optical flow aiding',
                                 'external vision aiding'
                             ],
                             [
                                 'Baro aiding', 'GPS aiding',
                                 'rangefinder aiding', 'external vision aiding'
                             ],
                             [
                                 'magnetic yaw aiding',
                                 '3D magnetoemter aiding',
                                 'magnetic declination aiding'
                             ]],
            plot_title='EKF Control Status - Figure A',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # plot control mode summary B
        # construct additional annotations for the airborne plot
        airborne_annotations = list()
        if np.amin(np.diff(control_mode['airborne'])) > -0.5:
            airborne_annotations.append(
                (on_ground_transition_time,
                 'air to ground transition not detected'))
        else:
            airborne_annotations.append(
                (on_ground_transition_time,
                 'on-ground at {:.1f} sec'.format(on_ground_transition_time)))
        if in_air_duration > 0.0:
            airborne_annotations.append(
                ((in_air_transition_time + on_ground_transition_time) / 2,
                 'duration = {:.1f} sec'.format(in_air_duration)))
        if np.amax(np.diff(control_mode['airborne'])) < 0.5:
            airborne_annotations.append(
                (in_air_transition_time,
                 'ground to air transition not detected'))
        else:
            airborne_annotations.append(
                (in_air_transition_time,
                 'in-air at {:.1f} sec'.format(in_air_transition_time)))

        data_plot = ControlModeSummaryPlot(
            status_time,
            control_mode, [['airborne'], ['estimating_wind']],
            x_label='time (sec)',
            y_labels=['airborne', 'estimating wind'],
            annotation_text=[[], []],
            additional_annotation=[airborne_annotations, []],
            plot_title='EKF Control Status - Figure B',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # plot innovation_check_flags summary
        data_plot = CheckFlagsPlot(
            status_time,
            innov_flags, [['vel_innov_fail', 'posh_innov_fail'],
                          ['posv_innov_fail', 'hagl_innov_fail'],
                          [
                              'magx_innov_fail', 'magy_innov_fail',
                              'magz_innov_fail', 'yaw_innov_fail'
                          ], ['tas_innov_fail'], ['sli_innov_fail'],
                          ['ofx_innov_fail', 'ofy_innov_fail']],
            x_label='time (sec)',
            y_labels=[
                'failed', 'failed', 'failed', 'failed', 'failed', 'failed'
            ],
            y_lim=(-0.1, 1.1),
            legend=[['vel NED', 'pos NE'],
                    ['hgt absolute', 'hgt above ground'],
                    ['mag_x', 'mag_y', 'mag_z', 'yaw'], ['airspeed'],
                    ['sideslip'], ['flow X', 'flow Y']],
            plot_title='EKF Innovation Test Fails',
            annotate=False,
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # gps_check_fail_flags summary
        data_plot = CheckFlagsPlot(
            status_time,
            gps_fail_flags, [[
                'nsat_fail', 'pdop_fail', 'herr_fail', 'verr_fail',
                'gfix_fail', 'serr_fail'
            ], ['hdrift_fail', 'vdrift_fail', 'hspd_fail', 'veld_diff_fail']],
            x_label='time (sec)',
            y_lim=(-0.1, 1.1),
            y_labels=['failed', 'failed'],
            sub_titles=[
                'GPS Direct Output Check Failures',
                'GPS Derived Output Check Failures'
            ],
            legend=[[
                'N sats', 'PDOP', 'horiz pos error', 'vert pos error',
                'fix type', 'speed error'
            ],
                    [
                        'horiz drift', 'vert drift', 'horiz speed',
                        'vert vel inconsistent'
                    ]],
            annotate=False,
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # filter reported accuracy
        data_plot = CheckFlagsPlot(
            status_time,
            estimator_status, [['pos_horiz_accuracy', 'pos_vert_accuracy']],
            x_label='time (sec)',
            y_labels=['accuracy (m)'],
            plot_title='Reported Accuracy',
            legend=[['horizontal', 'vertical']],
            annotate=False,
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the EKF IMU vibration metrics
        scaled_estimator_status = {
            'vibe[0]': 1000. * estimator_status['vibe[0]'],
            'vibe[1]': 1000. * estimator_status['vibe[1]'],
            'vibe[2]': estimator_status['vibe[2]']
        }
        data_plot = CheckFlagsPlot(status_time,
                                   scaled_estimator_status,
                                   [['vibe[0]'], ['vibe[1]'], ['vibe[2]']],
                                   x_label='time (sec)',
                                   y_labels=[
                                       'Del Ang Coning (mrad)',
                                       'HF Del Ang (mrad)', 'HF Del Vel (m/s)'
                                   ],
                                   plot_title='IMU Vibration Metrics',
                                   pdf_handle=pdf_pages,
                                   annotate=True)
        data_plot.save()
        data_plot.close()

        # Plot the EKF output observer tracking errors
        scaled_innovations = {
            'output_tracking_error[0]':
            1000. * estimator_status['output_tracking_error[0]'],
            'output_tracking_error[1]':
            estimator_status['output_tracking_error[1]'],
            'output_tracking_error[2]':
            estimator_status['output_tracking_error[2]']
        }
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'],
            scaled_innovations,
            [['output_tracking_error[0]'], ['output_tracking_error[1]'],
             ['output_tracking_error[2]']],
            x_label='time (sec)',
            y_labels=['angles (mrad)', 'velocity (m/s)', 'position (m)'],
            plot_title='Output Observer Tracking Error Magnitudes',
            pdf_handle=pdf_pages,
            annotate=True)
        data_plot.save()
        data_plot.close()

        # Plot the delta angle bias estimates
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'],
            estimator_status, [['states[10]'], ['states[11]'], ['states[12]']],
            x_label='time (sec)',
            y_labels=['X (rad)', 'Y (rad)', 'Z (rad)'],
            plot_title='Delta Angle Bias Estimates',
            annotate=False,
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the delta velocity bias estimates
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'],
            estimator_status, [['states[13]'], ['states[14]'], ['states[15]']],
            x_label='time (sec)',
            y_labels=['X (m/s)', 'Y (m/s)', 'Z (m/s)'],
            plot_title='Delta Velocity Bias Estimates',
            annotate=False,
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the earth frame magnetic field estimates
        declination, field_strength, inclination = magnetic_field_estimates_from_status(
            estimator_status)
        data_plot = CheckFlagsPlot(1e-6 * estimator_status['timestamp'], {
            'strength': field_strength,
            'declination': declination,
            'inclination': inclination
        }, [['declination'], ['inclination'], ['strength']],
                                   x_label='time (sec)',
                                   y_labels=[
                                       'declination (deg)',
                                       'inclination (deg)', 'strength (Gauss)'
                                   ],
                                   plot_title='Earth Magnetic Field Estimates',
                                   annotate=False,
                                   pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the body frame magnetic field estimates
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'],
            estimator_status, [['states[19]'], ['states[20]'], ['states[21]']],
            x_label='time (sec)',
            y_labels=['X (Gauss)', 'Y (Gauss)', 'Z (Gauss)'],
            plot_title='Magnetometer Bias Estimates',
            annotate=False,
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the EKF wind estimates
        data_plot = CheckFlagsPlot(1e-6 * estimator_status['timestamp'],
                                   estimator_status,
                                   [['states[22]'], ['states[23]']],
                                   x_label='time (sec)',
                                   y_labels=['North (m/s)', 'East (m/s)'],
                                   plot_title='Wind Velocity Estimates',
                                   annotate=False,
                                   pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()
Ejemplo n.º 4
0
def create_pdf_report(ulog: ULog, output_plot_filename: str) -> None:
    """
    creates a pdf report of the ekf analysis.
    :param ulog:
    :param output_plot_filename:
    :return:
    """

    # create summary plots
    # save the plots to PDF

    try:
        estimator_status = ulog.get_dataset('estimator_status').data
        print('found estimator_status data')
    except:
        raise PreconditionError('could not find estimator_status data')

    try:
        ekf2_innovations = ulog.get_dataset('ekf2_innovations').data
        print('found ekf2_innovation data')
    except:
        raise PreconditionError('could not find ekf2_innovation data')

    try:
        sensor_preflight = ulog.get_dataset('sensor_preflight').data
        print('found sensor_preflight data')
    except:
        raise PreconditionError('could not find sensor_preflight data')

    control_mode, innov_flags, gps_fail_flags = get_estimator_check_flags(estimator_status)

    status_time = 1e-6 * estimator_status['timestamp']

    b_finishes_in_air, b_starts_in_air, in_air_duration, in_air_transition_time, \
    on_ground_transition_time = detect_airtime(control_mode, status_time)

    with PdfPages(output_plot_filename) as pdf_pages:

        # plot IMU consistency data
        if ('accel_inconsistency_m_s_s' in sensor_preflight.keys()) and (
                'gyro_inconsistency_rad_s' in sensor_preflight.keys()):
            data_plot = TimeSeriesPlot(
                sensor_preflight, [['accel_inconsistency_m_s_s'], ['gyro_inconsistency_rad_s']],
                x_labels=['data index', 'data index'],
                y_labels=['acceleration (m/s/s)', 'angular rate (rad/s)'],
                plot_title='IMU Consistency Check Levels', pdf_handle=pdf_pages)
            data_plot.save()
            data_plot.close()

        # vertical velocity and position innovations
        data_plot = InnovationPlot(
            ekf2_innovations, [('vel_pos_innov[2]', 'vel_pos_innov_var[2]'),
                               ('vel_pos_innov[5]', 'vel_pos_innov_var[5]')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['Down Vel (m/s)', 'Down Pos (m)'], plot_title='Vertical Innovations',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # horizontal velocity innovations
        data_plot = InnovationPlot(
            ekf2_innovations, [('vel_pos_innov[0]', 'vel_pos_innov_var[0]'),
                               ('vel_pos_innov[1]','vel_pos_innov_var[1]')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['North Vel (m/s)', 'East Vel (m/s)'],
            plot_title='Horizontal Velocity  Innovations', pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # horizontal position innovations
        data_plot = InnovationPlot(
            ekf2_innovations, [('vel_pos_innov[3]', 'vel_pos_innov_var[3]'), ('vel_pos_innov[4]',
                                                                              'vel_pos_innov_var[4]')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['North Pos (m)', 'East Pos (m)'], plot_title='Horizontal Position Innovations',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # magnetometer innovations
        data_plot = InnovationPlot(
            ekf2_innovations, [('mag_innov[0]', 'mag_innov_var[0]'),
           ('mag_innov[1]', 'mag_innov_var[1]'), ('mag_innov[2]', 'mag_innov_var[2]')],
            x_labels=['time (sec)', 'time (sec)', 'time (sec)'],
            y_labels=['X (Gauss)', 'Y (Gauss)', 'Z (Gauss)'], plot_title='Magnetometer Innovations',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # magnetic heading innovations
        data_plot = InnovationPlot(
            ekf2_innovations, [('heading_innov', 'heading_innov_var')],
            x_labels=['time (sec)'], y_labels=['Heading (rad)'],
            plot_title='Magnetic Heading Innovations', pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # air data innovations
        data_plot = InnovationPlot(
            ekf2_innovations,
            [('airspeed_innov', 'airspeed_innov_var'), ('beta_innov', 'beta_innov_var')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['innovation (m/sec)', 'innovation (rad)'],
            sub_titles=['True Airspeed Innovations', 'Synthetic Sideslip Innovations'],
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # optical flow innovations
        data_plot = InnovationPlot(
            ekf2_innovations, [('flow_innov[0]', 'flow_innov_var[0]'), ('flow_innov[1]',
                                                                        'flow_innov_var[1]')],
            x_labels=['time (sec)', 'time (sec)'],
            y_labels=['X (rad/sec)', 'Y (rad/sec)'],
            plot_title='Optical Flow Innovations', pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # plot normalised innovation test levels
        # define variables to plot
        variables = [['mag_test_ratio'], ['vel_test_ratio', 'pos_test_ratio'], ['hgt_test_ratio']]
        y_labels = ['mag', 'vel, pos', 'hgt']
        legend = [['mag'], ['vel', 'pos'], ['hgt']]
        if np.amax(estimator_status['hagl_test_ratio']) > 0.0:  # plot hagl test ratio, if applicable
            variables[-1].append('hagl_test_ratio')
            y_labels[-1] += ', hagl'
            legend[-1].append('hagl')

        if np.amax(estimator_status[
                       'tas_test_ratio']) > 0.0:  # plot airspeed sensor test ratio, if applicable
            variables.append(['tas_test_ratio'])
            y_labels.append('TAS')
            legend.append(['airspeed'])

        data_plot = CheckFlagsPlot(
            status_time, estimator_status, variables, x_label='time (sec)', y_labels=y_labels,
            plot_title='Normalised Innovation Test Levels', pdf_handle=pdf_pages, annotate=True,
            legend=legend
        )
        data_plot.save()
        data_plot.close()

        # plot control mode summary A
        data_plot = ControlModeSummaryPlot(
            status_time, control_mode, [['tilt_aligned', 'yaw_aligned'],
            ['using_gps', 'using_optflow', 'using_evpos'], ['using_barohgt', 'using_gpshgt',
             'using_rnghgt', 'using_evhgt'], ['using_magyaw', 'using_mag3d', 'using_magdecl']],
            x_label='time (sec)', y_labels=['aligned', 'pos aiding', 'hgt aiding', 'mag aiding'],
            annotation_text=[['tilt alignment', 'yaw alignment'], ['GPS aiding', 'optical flow aiding',
             'external vision aiding'], ['Baro aiding', 'GPS aiding', 'rangefinder aiding',
             'external vision aiding'], ['magnetic yaw aiding', '3D magnetoemter aiding',
             'magnetic declination aiding']], plot_title='EKF Control Status - Figure A',
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # plot control mode summary B
        # construct additional annotations for the airborne plot
        airborne_annotations = list()
        if np.amin(np.diff(control_mode['airborne'])) > -0.5:
            airborne_annotations.append(
                (on_ground_transition_time, 'air to ground transition not detected'))
        else:
            airborne_annotations.append((on_ground_transition_time, 'on-ground at {:.1f} sec'.format(
                on_ground_transition_time)))
        if in_air_duration > 0.0:
            airborne_annotations.append(((in_air_transition_time + on_ground_transition_time) / 2,
                                         'duration = {:.1f} sec'.format(in_air_duration)))
        if np.amax(np.diff(control_mode['airborne'])) < 0.5:
            airborne_annotations.append(
                (in_air_transition_time, 'ground to air transition not detected'))
        else:
            airborne_annotations.append(
                (in_air_transition_time, 'in-air at {:.1f} sec'.format(in_air_transition_time)))

        data_plot = ControlModeSummaryPlot(
            status_time, control_mode, [['airborne'], ['estimating_wind']],
            x_label='time (sec)', y_labels=['airborne', 'estimating wind'], annotation_text=[[], []],
            additional_annotation=[airborne_annotations, []],
            plot_title='EKF Control Status - Figure B', pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # plot innovation_check_flags summary
        data_plot = CheckFlagsPlot(
            status_time, innov_flags, [['vel_innov_fail', 'posh_innov_fail'], ['posv_innov_fail',
                                                                               'hagl_innov_fail'],
                                       ['magx_innov_fail', 'magy_innov_fail', 'magz_innov_fail',
                                        'yaw_innov_fail'], ['tas_innov_fail'], ['sli_innov_fail'],
                                       ['ofx_innov_fail',
                                        'ofy_innov_fail']], x_label='time (sec)',
            y_labels=['failed', 'failed', 'failed', 'failed', 'failed', 'failed'],
            y_lim=(-0.1, 1.1),
            legend=[['vel NED', 'pos NE'], ['hgt absolute', 'hgt above ground'],
                    ['mag_x', 'mag_y', 'mag_z', 'yaw'], ['airspeed'], ['sideslip'],
                    ['flow X', 'flow Y']],
            plot_title='EKF Innovation Test Fails', annotate=False, pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # gps_check_fail_flags summary
        data_plot = CheckFlagsPlot(
            status_time, gps_fail_flags,
            [['nsat_fail', 'gdop_fail', 'herr_fail', 'verr_fail', 'gfix_fail', 'serr_fail'],
             ['hdrift_fail', 'vdrift_fail', 'hspd_fail', 'veld_diff_fail']],
            x_label='time (sec)', y_lim=(-0.1, 1.1), y_labels=['failed', 'failed'],
            sub_titles=['GPS Direct Output Check Failures', 'GPS Derived Output Check Failures'],
            legend=[['N sats', 'GDOP', 'horiz pos error', 'vert pos error', 'fix type',
                     'speed error'], ['horiz drift', 'vert drift', 'horiz speed',
                                      'vert vel inconsistent']], annotate=False, pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # filter reported accuracy
        data_plot = CheckFlagsPlot(
            status_time, estimator_status, [['pos_horiz_accuracy', 'pos_vert_accuracy']],
            x_label='time (sec)', y_labels=['accuracy (m)'], plot_title='Reported Accuracy',
            legend=[['horizontal', 'vertical']], annotate=False, pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the EKF IMU vibration metrics
        scaled_estimator_status = {'vibe[0]': 1000. * estimator_status['vibe[0]'],
                                   'vibe[1]': 1000. * estimator_status['vibe[1]'],
                                   'vibe[2]': estimator_status['vibe[2]']
                                   }
        data_plot = CheckFlagsPlot(
            status_time, scaled_estimator_status, [['vibe[0]'], ['vibe[1]'], ['vibe[2]']],
            x_label='time (sec)', y_labels=['Del Ang Coning (mrad)', 'HF Del Ang (mrad)',
                                            'HF Del Vel (m/s)'], plot_title='IMU Vibration Metrics',
            pdf_handle=pdf_pages, annotate=True)
        data_plot.save()
        data_plot.close()

        # Plot the EKF output observer tracking errors
        scaled_innovations = {
            'output_tracking_error[0]': 1000. * ekf2_innovations['output_tracking_error[0]'],
            'output_tracking_error[1]': ekf2_innovations['output_tracking_error[1]'],
            'output_tracking_error[2]': ekf2_innovations['output_tracking_error[2]']
            }
        data_plot = CheckFlagsPlot(
            1e-6 * ekf2_innovations['timestamp'], scaled_innovations,
            [['output_tracking_error[0]'], ['output_tracking_error[1]'],
             ['output_tracking_error[2]']], x_label='time (sec)',
            y_labels=['angles (mrad)', 'velocity (m/s)', 'position (m)'],
            plot_title='Output Observer Tracking Error Magnitudes',
            pdf_handle=pdf_pages, annotate=True)
        data_plot.save()
        data_plot.close()

        # Plot the delta angle bias estimates
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'], estimator_status,
            [['states[10]'], ['states[11]'], ['states[12]']],
            x_label='time (sec)', y_labels=['X (rad)', 'Y (rad)', 'Z (rad)'],
            plot_title='Delta Angle Bias Estimates', annotate=False, pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the delta velocity bias estimates
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'], estimator_status,
            [['states[13]'], ['states[14]'], ['states[15]']],
            x_label='time (sec)', y_labels=['X (m/s)', 'Y (m/s)', 'Z (m/s)'],
            plot_title='Delta Velocity Bias Estimates', annotate=False, pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the earth frame magnetic field estimates
        declination, field_strength, inclination = magnetic_field_estimates_from_status(
            estimator_status)
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'],
            {'strength': field_strength, 'declination': declination, 'inclination': inclination},
            [['declination'], ['inclination'], ['strength']],
            x_label='time (sec)', y_labels=['declination (deg)', 'inclination (deg)',
                                            'strength (Gauss)'],
            plot_title='Earth Magnetic Field Estimates', annotate=False,
            pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the body frame magnetic field estimates
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'], estimator_status,
            [['states[19]'], ['states[20]'], ['states[21]']],
            x_label='time (sec)', y_labels=['X (Gauss)', 'Y (Gauss)', 'Z (Gauss)'],
            plot_title='Magnetometer Bias Estimates', annotate=False, pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()

        # Plot the EKF wind estimates
        data_plot = CheckFlagsPlot(
            1e-6 * estimator_status['timestamp'], estimator_status,
            [['states[22]'], ['states[23]']], x_label='time (sec)',
            y_labels=['North (m/s)', 'East (m/s)'], plot_title='Wind Velocity Estimates',
            annotate=False, pdf_handle=pdf_pages)
        data_plot.save()
        data_plot.close()