Ejemplo n.º 1
0
def NEW_PTM_WKNN(data_set):
    train, test = Pretreatment.partitioningTPMKNN(data_set)
    normalized_train_matrix = Pretreatment.normalization(train)
    normalized_test_matrix = Pretreatment.normalization(test)
    klist = np.zeros((normalized_train_matrix.shape[0], 1))
    predictions = np.zeros((normalized_test_matrix.shape[0], 1))
    for unknowid in range(0,
                          len(normalized_train_matrix)):  # 给训练集样本加入标签local k
        klist[unknowid] = PTM_KNN.trainlocal_k(normalized_train_matrix,
                                               unknowid)
    new_normalized_train_matrix = np.column_stack(
        (normalized_train_matrix, klist))
    for unknowid_text in range(
            0, len(normalized_test_matrix)):  # 选取测试集样本最近三个点的最大local k作为最佳k
        best_c = bestc(new_normalized_train_matrix, normalized_test_matrix,
                       unknowid_text, data_set)  # 循环选取c值
        new_k1 = PTM_KNN.testlocal_k(new_normalized_train_matrix,
                                     normalized_test_matrix, unknowid_text,
                                     best_c)  #通过c值选取k值
        predictions[unknowid_text] = WKNN.weighted_knn(
            unknowid_text, normalized_train_matrix, int(new_k1),
            normalized_test_matrix)
        # 计算邻近k个值中分类权重最高的分类作为预测分类
    TP, FP, FN, TN = analysis.TPFPFNTN(normalized_test_matrix, predictions)
    return analysis.recall(TP,
                           FN), analysis.F_score(TP, FP, FN), analysis.G_mean(
                               TP, FN, TN, FP), TP, FN, TN, FP
Ejemplo n.º 2
0
def WKNN(data_set,best_k):
    train, test = Pretreatment.partitioningTPMKNN(data_set)
    normalized_train_matrix = Pretreatment.normalization(train)
    normalized_test_matrix = Pretreatment.normalization(test)
    predictions = np.zeros((normalized_test_matrix.shape[0], 1))
    for unknowid_text in range(0, len(normalized_test_matrix)):
        predictions[unknowid_text] = weighted_knn(unknowid_text, normalized_train_matrix, int(best_k), normalized_test_matrix)
    TP, FP, FN, TN = analysis.TPFPFNTN(normalized_test_matrix, predictions)
    return analysis.recall(TP, FN), analysis.F_score(TP, FP, FN), analysis.G_mean(TP, FN, TN, FP),TP, FN, TN, FP
Ejemplo n.º 3
0
def PTM_KNN(data_set):
    train, test = Pretreatment.partitioningTPMKNN(data_set)
    normalized_train_matrix = Pretreatment.normalization(train)
    normalized_test_matrix = Pretreatment.normalization(test)
    klist = np.zeros((normalized_train_matrix.shape[0], 1))
    predictions = np.zeros((normalized_test_matrix.shape[0], 1))
    for unknowid in range(0, len(normalized_train_matrix)):
        klist[unknowid] = trainlocal_k(normalized_train_matrix, unknowid)
    new_normalized_train_matrix = np.column_stack(
        (normalized_train_matrix, klist))
    for unknowid_text in range(0, len(normalized_test_matrix)):
        new_k = testlocal_k(new_normalized_train_matrix,
                            normalized_test_matrix, unknowid_text, 3)
        predictions[unknowid_text] = KNN.traditional_knn(
            unknowid_text, normalized_train_matrix, int(new_k),
            normalized_test_matrix)
    TP, FP, FN, TN = analysis.TPFPFNTN(normalized_test_matrix, predictions)
    return analysis.recall(TP,
                           FN), analysis.F_score(TP, FP, FN), analysis.G_mean(
                               TP, FN, TN, FP), TP, FN, TN, FP