def analyze_pairs(self): # Analyze pairs ## This is a very basic algorithm that only makes use of geography ## TODO: Update algorithm to incorporate more than geography analyze = Analyze(self.users) analyze.analyze_easy_potentials() match_results = analyze.get_best_matches() potential_pairs = analyze.get_potential_pairs() return match_results
def __init__(self, analysis: Analyze): """ Analyze constructor :param analysis: Analize object after processing """ self.logger = logger.Logger(name=__name__, log_level=logger.INFO) self.my_logger = self.logger.logger self.my_logger.info('INIT') self.analysis = analysis self.headings = TheConfig.headings #: users headings configuration self.menubar_spec = TheConfig.menubar #: user menubar configuration self.menubar_data = analysis.menubar() #: menubar scanned data self.output = [TheConfig.HEADER_HTML ] #: start with bookmarks file header self.indent = 0 #: level to indent #: date stamp for all html entities we create self.datestamp = int(datetime.datetime.now().timestamp()) # create output structure self.write(TheConfig.LIST_HTML) self.write_toolbar_heading('Bookmarks Bar') self.begin_list() self.write_section('head') for section in self.headings: self.write_section(section) self.write_section('tail') self.end_list() pass
def results(): link = request.form['address'] des, dia = Process(link) if len(des) == 0 or len(dia) == 0: error = True return redirect(url_for('home', error=error)) timestamp = Analyze(des, dia) print(timestamp) return render_template("results.html", timestamp=timestamp)
def analyze(self): self.ProgressVar.set(0) if self.SPathUnknown == None or self.SInstrument == None or ( self.saveVar.get() == 1 and self.SPathForSaving == None): messagebox.showerror( 'Ojej! Wystąpił błąd.', 'Nie podano ścieżki do plików bądź nie wybrano instrumentu!') elif self.restartVar == None: action = Analyze(self.SInstrument, self.SPathUnknown, callback=self.results, callback_progress=self.progress_bar) action.start() self.restartVar == self.SInstrument else: if os.path.exists('mfcc/mfccs_unknown_' + self.restartVar + '.p'): os.remove('mfcc/mfccs_unknown_' + self.restartVar + '.p') action = Analyze(self.SInstrument, self.SPathUnknown, callback=self.results, callback_progress=self.progress_bar) action.start()
from analyze import Vector,Analyze global vector vector = Vector() vector.set_corpus(collection_name="poi",key="Categories") vector.set_initial_vector(collection_name="categories",key="Name") global analyze analyze = Analyze()
def makePlotFor(param): allData = [] for dset in datasets: print '-------------------------------' print 'Extracting from', dset path = dpaths[dset] print 'ANALYZING', path stack_names = sorted([ name for name in listdir(path) if not name.lower().count("unusable") if not name.lower().count("ignore") if isdir(pjoin(path, name)) ]) #print 'Stacks', stack_names specs = { 'LEG_BODY_ANGLE': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (-220, 220), 'YLABEL': 'Degrees', 'TITLE': 'Leg-Body Angle' }, 'SWING_AMPLITUDE': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (0, 2500), 'YLABEL': 'um', 'TITLE': 'Swing Amplitude' }, 'SWING_DURATION': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (0, 200), 'YLABEL': 'ms', 'TITLE': 'Swing Duration' }, 'STANCE_AMPLITUDE': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (0, 2500), 'YLABEL': 'um', 'TITLE': 'Stance Amplitude' }, 'STANCE_DURATION': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (0, 200), 'YLABEL': 'ms', 'TITLE': 'Stance Duration' }, 'AEPx': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (-5000, 5000), 'YLABEL': 'um', 'TITLE': 'Anterior Extreme Position w.r.t. X' }, 'PEPx': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (-5000, 5000), 'YLABEL': 'um', 'TITLE': 'Posterior Extreme Position w.r.t. X' }, 'AEA': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (-220, 220), 'YLABEL': 'Degrees', 'TITLE': 'Anterior Extreme Angle' }, 'PEA': { 'PLOT': 'BOX', 'ENTITIES': legs, 'YLIMS': (-220, 220), 'YLABEL': 'Degrees', 'TITLE': 'Posterior Extreme Angle' }, 'CCI': { 'PLOT': 'BOX', 'ENTITIES': contralateral_pairs, 'YLIMS': (0.75, 1.02), 'YLABEL': '/s', 'TITLE': 'Contra-lateral Coordination Index' }, 'ICI': { 'PLOT': 'BOX', 'ENTITIES': ipsilateral_pairs, 'YLIMS': (0.75, 1.02), 'YLABEL': '/s', 'TITLE': 'Ipsi-lateral Coordination Index' }, 'WALK_SPEED': { 'PLOT': 'BOX', 'ENTITIES': ['Speed'], 'YLIMS': (0, 50), 'YLABEL': 'mm/s', 'TITLE': 'Average Walking Speed' }, 'STOLEN_SWINGS': { 'PLOT': 'BOX', 'ENTITIES': ['Swings/cycle'], 'YLIMS': (0, 1.2), 'YLABEL': '#/cycle', 'TITLE': 'Stolen Swings Per Cycle' }, 'CONCURRENCY': { 'PLOT': 'PIE', 'ENTITIES': concurrency_states, 'YLIMS': (0, 100.0), 'YLABEL': '%', 'TITLE': 'Proportional Concurrency States\n%' }, } holder = [[] for k in range(len(specs[param]['ENTITIES']))] bucket = dict(zip(specs[param]['ENTITIES'], holder)) for stack_name in stack_names: print "===Stack Name ==", stack_name, "=====" ana = Analyze(pjoin(path, stack_name)) funcky = { # legs 'LEG_BODY_ANGLE': ana.getLegBodyAngles, 'SWING_AMPLITUDE': ana.getSwingAmplitude, 'SWING_DURATION': ana.getSwingDuration, 'STANCE_AMPLITUDE': ana.getStanceAmplitude, 'STANCE_DURATION': ana.getStanceDuration, 'AEPx': ana.getAEPx, 'PEPx': ana.getPEPx, 'AEA': ana.getAEA, 'PEA': ana.getPEA, # contralateral_pairs 'CCI': ana.getCCI, # ipsi_lateral_pairs 'ICI': ana.getICI, 'WALK_SPEED': ana.getWalkingSpeed, 'STOLEN_SWINGS': ana.getStolenSwings, 'CONCURRENCY': ana.getConcurrency } bucket = filledBucket(bucket, specs[param]['ENTITIES'], funcky[param]) csvDic = convertDicToListForCsv(bucket) csvfname = path + '_' + param + '_dict.csv' with open(csvfname, 'w') as f: w = csv.writer(f) w.writerows(csvDic) allData.append([param, bucket]) return allData
from dash.dependencies import Input, Output from analyze import Analyze import dash import dash_core_components as dcc import dash_html_components as html import json analyze_run = Analyze() data = analyze_run.read() print(analyze_run.meta) app = dash.Dash(__name__) app.layout = html.Div([ dcc.Graph( id='basic-interactions', figure={ 'data': [ { 'x': analyze_run.dataset["FSC-A"].values, 'y': analyze_run.dataset["SSC-A"].values, 'mode': 'markers', }, ] } ), html.Div([ dcc.Markdown(""" **Hover Data**
def analyze(self, image): return Analyze(image, self.bands()).apply()
def do_crawl(self): """ 执行爬取 """ echo = Echo() url_count = 0 url_num = len(self.url.url) while url_count < url_num: data_count = 0 url_dict = self.url.url[url_count] req = requests.Request(method=url_dict['method'], url=url_dict['value']) #加入cookies,data和headers if self.parse.cookie_range[2] >= url_count + 1 >= self.parse.cookie_range[1]: req.cookies = self.cookie if len(url_dict['data']) > data_count: req.data = url_dict['data'][data_count] data_count += 1 for ele in url_dict['addparam']: try: req.data[ele[1]] = self.url.url[int(ele[0])-1]['text'][0] except IndexError: print "Error!No additional param found." if len(self.header.header) > 0: req.headers = self.header.header s = requests.Session() prepped = s.prepare_request(req) self.resp = s.send(prepped, stream=True) if self.resp.status_code == 200: if url_count+1 == self.parse.cookie_range[0]: self.cookie = self.resp.cookies else: print "status_code:{0}".format(self.resp.status_code) #数据分析 if url_dict['type'] == 't': analyze = Analyze() text_list = analyze.analyze(self.resp.text, url_dict['re']) self.url.url[url_count]['text'] = text_list #输出结果 if url_dict['type'] == 't': pretext = url_dict['value'] + '\n' + ''.join(str(s) + '\n' for s in url_dict['data']) + '\n\n' self.text = ''.join(s + '\n' for s in text_list) elif url_dict['type'] == 'b': m = url_dict['value'].rfind('/') pretext = url_dict['value'][m+1:] self.text = self.resp.iter_content(chunk_size=128) else: raise ValueError('[Type] name not found') if self.parse.echo_method != 'xls': echo.echo(self.parse.echo_method, pretext, self.text, url_dict['type'], url_count, data_count) else: echo.echo_to_xls(self.text, self.parse.xls_list[0], self.parse.xls_list[1], self.parse.xls_list[2], self.parse.xls_title) if data_count == len(url_dict['data']): url_count += 1
parser.add_option("-s", "--style", dest="style", type = int, help="The color style set", default = 0) parser.add_option("-t", "--threshold", dest="thresh", help="The bootstrap threshold") parser.add_option("-x", "--modelCond", dest="modelCond", default = None, help="The model condition that the occupancy map will be plotted for") parser.add_option("-y", dest="newModel", default = None, help="The new order for model conditions") parser.add_option("-w", dest="newOrder", default = None, help="The new order for clades") parser.add_option("-k", "--missing", dest="missing", default = 0, help="The missing data handling flag. If this flag set to one, clades with partially missing taxa are considered as complete.") parser.add_option("-o", "--output", dest="label", default = None, help="name of the output folder for the relative frequency analysis. If you are using the docker it should start with '/data'.") parser.add_option("-g", "--outgroup", dest="outg", default = None, help="Name of the outgroup for the hypothesis in relative frequency analysis specified in the annotation file, eg. Outgroup or Base.") opt = Opt(parser) analyzer = Analyze(opt) try: analyzer.analyze() except ValueError: print("analysis failed!") raise sys.exit(1)
def bt3_clicked(self): self.form.hide() ui = Analyze() ui.show() ui.exec_() self.form.show()
def result(): resume = request.form['resume'] jobdesc = request.form['jobdesc'] analysis = Analyze(resume, jobdesc) results = analysis.metrics() return render_template('result.html', title="Results", results=results)
def main(): print('This program analyzes yout Google Fit data.') print( 'Make sure you have the file \'Daily Summaries.csv\' in the same directory.' ) user_input = input('Do you want to start? Y/N \n') if user_input == 'Y' or 'y': print('Type (enter number):\n') print('1 - Speed') print('2 - Activities time') print('3 - Steps') user_input = input() user_date = input('Please enter date in format YYY-MM-DD\n') validate_date(user_date) if user_input == '1': graph_speed = Analyze(user_date) graph_speed.speed() elif user_input == '2': bar_time = Analyze(user_date) bar_time.activity_time() elif user_input == '3': step_bar = Analyze(user_date) step_bar.steps() else: exit
pepxs = dict(zip(legs, [[] for k in range(6)])) ccis = dict(zip(contralateral_pairs, [[] for k in range(3)])) icis = dict(zip(ipsilateral_pairs, [[] for k in range(4)])) lbas = dict(zip(legs, [[] for k in range(6)])) speeds = {'Walk Speeds': []} aeas = dict(zip(legs, [[] for k in range(6)])) peas = dict(zip(legs, [[] for k in range(6)])) concurrencies = {'concurrencies': []} for stack_name in stack_names: # Init the Analyzer #------------------ stack_path = pjoin(path, stack_name) print 'Analysing', stack_path print '----------------------------------------------------------------' ana = Analyze(stack_path) # Generate Gait Diagram #---------------------- ana.genGaitDiagram() # Param 1. print 'Swing Amplitude' #----------------------- # Unit of Observation : One Swing Event for leg in legs: swing_amplitudes[leg].extend(ana.getSwingAmplitude(leg)) print # ''' # 2
def analyze(self, image): return Analyze(image, self.bands(), self.mosaic_spec).apply()
from analyze import Analyze # import codecs # text = codecs.open('D:\PyCharm Community Edition 2016.3.2\DeeCamp\\NLPpart\data\CarReport\CarReport_122.txt', 'r', 'gb18030').read() ana = Analyze() # ana = ana.init() # print(1) keywords = ana.keywords pos = ana.pos cws = ana.cws
num_test_samples) = load_anomaly_data() else: (x_train, num_train_samples, x_test, y_test, num_test_samples) = load_data() if args.backbone == "vgg": model = VGG16(include_top=False, weights='imagenet') #model_vgg = Model(input = base_vgg_model.input, output = base_vgg_model.get_layer('block4_pool').output) else: model = ResNet50(weights='imagenet', include_top=False) if args.task == "anomaly": features_train_array = model.predict(x_train) features_train_array = features_train_array.reshape( num_train_samples, -1) #reshape to 2d from 4d array features_test_array = model.predict(x_test) features_test_array = features_test_array.reshape(num_test_samples, -1) # print('test array shape: ',features_test_array.shape) # print('train array shape: ',features_train_array.shape) Analyze(features_train_array, features_test_array, y_test) if args.task == "cluster": features_train_array = model.predict(x_train) features_train_array = features_train_array.reshape( num_train_samples, -1) #reshape to 2d from 4d array #features_test_array = model.predict(x_test) #features_test_array = features_test_array.reshape(num_test_samples, -1) Cluster(features_train_array, num_train_samples)
elif "syslog" in f: mapreduce_app_logs.append(f) else: pass ##initialize parser yarn_parser=YarnParser(rm_log,nm_logs,spark_app_logs,mapreduce_app_logs) ##parse logs yarn_parser.rm_parse() yarn_parser.nm_parse() yarn_parser.spark_parse() yarn_parser.mapreduce_parse() ##sort by times yarn_parser.sort_by_time() tapps=yarn_parser.get_apps() ##parse successful apps apps=Analyze.success_apps(tapps) #apps=tapps ##do analysis total_delays=Analyze.total_delay(apps) persist_map(output_dir+"/total",total_delays) #in_delays=Analyze.in_application_delays(apps) #persist_map(output_dir+"/in",in_delays) out_delays=Analyze.out_application_delays(apps) persist_map(output_dir+"/out",out_delays) am_delays=Analyze.am_delay(apps) persist_map(output_dir+"/am",am_delays) c1_delays=Analyze.c1_delay(apps)
from random import choice from analyze import Analyze from tools.args_parser import command_line_arguments from tools.create_loggger import create_console_logger_handler if __name__ == '__main__': args = command_line_arguments() create_console_logger_handler() analyze = Analyze(num_of_threads=choice(range(2, 10)), max_stress_duration=args.stress_duration) analyze.run() analyze.analyze()
if args.backbone == "vgg": model = VGG16(include_top=False, weights='imagenet') #model_vgg = Model(input = base_vgg_model.input, output = base_vgg_model.get_layer('block4_pool').output) else: model = ResNet50(weights='imagenet', include_top=False) if args.task == "anomaly": features_train_array = model.predict(x_train) features_train_array = features_train_array.reshape( num_train_samples, -1) #reshape to 2d from 4d array features_test_array = model.predict(x_test) features_test_array = features_test_array.reshape(num_test_samples, -1) estimator_str = "svc" if args.subtask == "outlier": estimator_str = "isolationforest" #estimator_params = GridSearch(features_train_array,y_train,estimator_str) Analyze(args, estimator_str, features_train_array, y_train, features_test_array, y_test, testoutputfile) if args.task == "cluster": features_train_array = model.predict(x_train) features_train_array_np = np.array(features_train_array) features_train_array_list.append(features_train_array_np.flatten()) features_train_array_list_np = np.array(features_train_array_list) Cluster(features_train_array, num_train_samples)
# open bookmarks file and feed to the parser bookmarks = None try: my_logger.info(f'Processing input file: {TheConfig.input_file}') with open(TheConfig.input_file, mode='r', encoding='utf-8') as html: bookmarks_html = html.read() html_parser.feed(bookmarks_html) bookmarks = html_parser.parser.bookmarks except Exception as e: my_logger.exception(f'Exception parsing file: {e}', exc_info=e) # analyze bookmarks just parsed analysis = None try: analysis = Analyze(bookmarks.bookmarks) except Exception as e: my_logger.exception(f'Exception analyzing file: {e}', exc_info=e) # create bookmark output structure output = None try: output = Reformat(analysis).output my_logger.info(f'Creating output file: {TheConfig.output_file}') with open(TheConfig.output_file, 'w') as file: for s in output: if isinstance(s, list): for s_ in s: file.write(s_ + '\n') else: file.write(s + '\n')
from analyze import Analyze import argparse # ap = argparse.ArgumentParser() # ap.addargument("-f", "--folder") # opts = ap.parse_args() run = Analyze() run.read() files = run.files def indexer(): with open("FACS_INDEX.txt", "w") as file: for i in files: run.read(i) meta = run.meta str_to_save = f"File: {meta['$FIL']},Date: {meta['$DATE']},\n" file.write(str_to_save) indexer()