#------------------------------------------------------------------------------
# Produce a documentation of parameters
#------------------------------------------------------------------------------
from anuga.validation_utilities import save_parameters_tex
save_parameters_tex(domain)


#------------------------------------------------------------------------------
#
# Evolve system through time
#
#------------------------------------------------------------------------------

barrier()

for t in domain.evolve(yieldstep=10.0, finaltime=dtQdata*(len(Qdata)-2)):
    if(myid==0 and verbose):
        print domain.timestepping_statistics()

    vol = domain.report_water_volume_statistics()

barrier()

# Run sww merge
if( (myid==0) & (numprocs>1)):
    print 'Merging sww files: ', numprocs, myid
    anuga.utilities.sww_merge.sww_merge_parallel('channel_floodplain1',np=numprocs,verbose=True,delete_old=True)

barrier()
finalize()
def run_simulation(parallel = False, control_data = None, test_points = None, verbose = False):
    success = True

##-----------------------------------------------------------------------
## Setup domain
##-----------------------------------------------------------------------

    points, vertices, boundary = rectangular_cross(int(old_div(length,dx)),
                                                   int(old_div(width,dy)),
                                                   len1=length, 
                                                   len2=width)

    domain = anuga.Domain(points, vertices, boundary)   
    #domain.set_name('output_parallel_boyd_pipe_op')                 # Output name
    domain.set_store(False)
    domain.set_default_order(2)

##-----------------------------------------------------------------------
## Distribute domain
##-----------------------------------------------------------------------

    if parallel:
        domain = distribute(domain)
        #domain.dump_triangulation("boyd_pipe_domain.png")
    

##-----------------------------------------------------------------------
## Setup boundary conditions
##-----------------------------------------------------------------------
    
    domain.set_quantity('elevation', topography) 
    domain.set_quantity('friction', 0.01)         # Constant friction 
    domain.set_quantity('stage',
                        expression='elevation')   # Dry initial condition

    
    Bi = anuga.Dirichlet_boundary([5.0, 0.0, 0.0])
    Br = anuga.Reflective_boundary(domain)              # Solid reflective wall
    domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})


##-----------------------------------------------------------------------
## Determine triangle index coinciding with test points
##-----------------------------------------------------------------------

    assert(test_points is not None)
    assert(len(test_points) == samples)

    tri_ids = []

    for point in test_points:
        try:
            k = domain.get_triangle_containing_point(point)
            if domain.tri_full_flag[k] == 1:
                tri_ids.append(k)
            else:
                tri_ids.append(-1)            
        except:
            tri_ids.append(-2)

    if verbose: print('P%d has points = %s' %(myid, tri_ids))

    if not parallel: control_data = []

    ################ Define Fractional Operators ##########################

    inlet0 = None
    inlet1 = None
    boyd_pipe0 = None
    
    inlet0 = Inlet_operator(domain, line0, Q0, verbose = False)
    inlet1 = Inlet_operator(domain, line1, Q1, verbose = False)
    
    # Enquiry point [ 19.    2.5] is contained in two domains in 4 proc case
    
    boyd_pipe0 = Boyd_pipe_operator(domain,
                                  end_points=[[9.0, 2.5],[19.0, 2.5]],
                                  losses=1.5,
                                  diameter=5.0,
                                  apron=5.0,
                                  use_momentum_jet=True,
                                  use_velocity_head=False,
                                  manning=0.013,
                                  verbose=False)
        
    if inlet0 is not None and verbose: inlet0.print_statistics()
    if inlet1 is not None and verbose: inlet1.print_statistics()
    if boyd_pipe0 is not None and verbose: boyd_pipe0.print_statistics()

#    if parallel:
#        factory = Parallel_operator_factory(domain, verbose = True)
#
#        inlet0 = factory.inlet_operator_factory(line0, Q0)
#        inlet1 = factory.inlet_operator_factory(line1, Q1)
#        
#        boyd_box0 = factory.boyd_box_operator_factory(end_points=[[9.0, 2.5],[19.0, 2.5]],
#                                          losses=1.5,
#                                          width=1.5,
#                                          apron=5.0,
#                                          use_momentum_jet=True,
#                                          use_velocity_head=False,
#                                          manning=0.013,
#                                          verbose=False)
#
#    else:
#        inlet0 = Inlet_operator(domain, line0, Q0)
#        inlet1 = Inlet_operator(domain, line1, Q1)
#
#        # Enquiry point [ 19.    2.5] is contained in two domains in 4 proc case
#        boyd_box0 = Boyd_box_operator(domain,
#                          end_points=[[9.0, 2.5],[19.0, 2.5]],
#                          losses=1.5,
#                          width=1.5,
#                          apron=5.0,
#                          use_momentum_jet=True,
#                          use_velocity_head=False,
#                          manning=0.013,
#                          verbose=False)
    
    #######################################################################

    ##-----------------------------------------------------------------------
    ## Evolve system through time
    ##-----------------------------------------------------------------------

    for t in domain.evolve(yieldstep = 2.0, finaltime = 20.0):
        if myid == 0 and verbose:
            domain.write_time()

        #print domain.volumetric_balance_statistics()
    
        stage = domain.get_quantity('stage')


        if boyd_pipe0 is not None and verbose : boyd_pipe0.print_timestepping_statistics()
 
        #for i in range(samples):
        #    if tri_ids[i] >= 0:                
        #        if verbose: print 'P%d tri %d, value = %s' %(myid, i, stage.centroid_values[tri_ids[i]])
                    
        sys.stdout.flush()
 
        pass

    success = True

##-----------------------------------------------------------------------
## Assign/Test Control data
##-----------------------------------------------------------------------

    if not parallel:
        stage = domain.get_quantity('stage')

        for i in range(samples):
            assert(tri_ids[i] >= 0)
            control_data.append(stage.centroid_values[tri_ids[i]])
        
        if inlet0 is not None:
            control_data.append(inlet0.inlet.get_average_stage())
            control_data.append(inlet0.inlet.get_average_xmom())
            control_data.append(inlet0.inlet.get_average_ymom())
            control_data.append(inlet0.inlet.get_total_water_volume())
            control_data.append(inlet0.inlet.get_average_depth())

        if verbose: print('P%d control_data = %s' %(myid, control_data))
    else:
        stage = domain.get_quantity('stage')
        
        for i in range(samples):
            if tri_ids[i] >= 0:
                local_success = num.allclose(control_data[i], stage.centroid_values[tri_ids[i]])
                success = success and local_success
                if verbose: 
                    print('P%d tri %d, control = %s, actual = %s, Success = %s' %(myid, i, control_data[i], stage.centroid_values[tri_ids[i]], local_success)) 
                
                
        if inlet0 is not None:
            inlet_master_proc = inlet0.inlet.get_master_proc()
            average_stage = inlet0.inlet.get_global_average_stage()
            average_xmom = inlet0.inlet.get_global_average_xmom()
            average_ymom = inlet0.inlet.get_global_average_ymom()
            average_volume = inlet0.inlet.get_global_total_water_volume()
            average_depth = inlet0.inlet.get_global_average_depth()

            if myid == inlet_master_proc:
                if verbose: 
                    print('P%d average stage, control = %s, actual = %s' %(myid, control_data[samples], average_stage))

                    print('P%d average xmom, control = %s, actual = %s' %(myid, control_data[samples+1], average_xmom))

                    print('P%d average ymom, control = %s, actual = %s' %(myid, control_data[samples+2], average_ymom))

                    print('P%d average volume, control = %s, actual = %s' %(myid, control_data[samples+3], average_volume))

                    print('P%d average depth, control = %s, actual = %s' %(myid, control_data[samples+4], average_depth))


        assert(success)

    if parallel:
        finalize()

    return control_data
Ejemplo n.º 3
0
from anuga.validation_utilities import save_parameters_tex

save_parameters_tex(domain)

#------------------------------------------------------------------------------
#
# Evolve system through time
#
#------------------------------------------------------------------------------

barrier()

for t in domain.evolve(yieldstep=10.0, finaltime=dtQdata * (len(Qdata) - 2)):
    if (myid == 0 and verbose):
        print(domain.timestepping_statistics())

    vol = domain.report_water_volume_statistics()

barrier()

# Run sww merge
if ((myid == 0) & (numprocs > 1)):
    print('Merging sww files: ', numprocs, myid)
    anuga.utilities.sww_merge.sww_merge_parallel('channel_floodplain1',
                                                 np=numprocs,
                                                 verbose=True,
                                                 delete_old=True)

barrier()
finalize()
def run_simulation(parallel = False, control_data = None, test_points = None, verbose = False):
    success = True

##-----------------------------------------------------------------------
## Setup domain
##-----------------------------------------------------------------------

    points, vertices, boundary = rectangular_cross(int(length/dx),
                                                   int(width/dy),
                                                   len1=length, 
                                                   len2=width)

    domain = anuga.Domain(points, vertices, boundary)   
    #domain.set_name('output_parallel_boyd_pipe_op')                 # Output name
    domain.set_store(False)
    domain.set_default_order(2)

##-----------------------------------------------------------------------
## Distribute domain
##-----------------------------------------------------------------------

    if parallel:
        domain = distribute(domain)
        #domain.dump_triangulation("boyd_pipe_domain.png")
    

##-----------------------------------------------------------------------
## Setup boundary conditions
##-----------------------------------------------------------------------
    
    domain.set_quantity('elevation', topography) 
    domain.set_quantity('friction', 0.01)         # Constant friction 
    domain.set_quantity('stage',
                        expression='elevation')   # Dry initial condition

    
    Bi = anuga.Dirichlet_boundary([5.0, 0.0, 0.0])
    Br = anuga.Reflective_boundary(domain)              # Solid reflective wall
    domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})


##-----------------------------------------------------------------------
## Determine triangle index coinciding with test points
##-----------------------------------------------------------------------

    assert(test_points is not None)
    assert(len(test_points) == samples)

    tri_ids = []

    for point in test_points:
        try:
            k = domain.get_triangle_containing_point(point)
            if domain.tri_full_flag[k] == 1:
                tri_ids.append(k)
            else:
                tri_ids.append(-1)            
        except:
            tri_ids.append(-2)

    if verbose: print 'P%d has points = %s' %(myid, tri_ids)

    if not parallel: control_data = []

    ################ Define Fractional Operators ##########################

    inlet0 = None
    inlet1 = None
    boyd_pipe0 = None
    
    inlet0 = Inlet_operator(domain, line0, Q0, verbose = False)
    inlet1 = Inlet_operator(domain, line1, Q1, verbose = False)
    
    # Enquiry point [ 19.    2.5] is contained in two domains in 4 proc case
    
    boyd_pipe0 = Boyd_pipe_operator(domain,
                                  end_points=[[9.0, 2.5],[19.0, 2.5]],
                                  losses=1.5,
                                  diameter=5.0,
                                  apron=5.0,
                                  use_momentum_jet=True,
                                  use_velocity_head=False,
                                  manning=0.013,
                                  verbose=False)
        
    if inlet0 is not None and verbose: inlet0.print_statistics()
    if inlet1 is not None and verbose: inlet1.print_statistics()
    if boyd_pipe0 is not None and verbose: boyd_pipe0.print_statistics()

#    if parallel:
#        factory = Parallel_operator_factory(domain, verbose = True)
#
#        inlet0 = factory.inlet_operator_factory(line0, Q0)
#        inlet1 = factory.inlet_operator_factory(line1, Q1)
#        
#        boyd_box0 = factory.boyd_box_operator_factory(end_points=[[9.0, 2.5],[19.0, 2.5]],
#                                          losses=1.5,
#                                          width=1.5,
#                                          apron=5.0,
#                                          use_momentum_jet=True,
#                                          use_velocity_head=False,
#                                          manning=0.013,
#                                          verbose=False)
#
#    else:
#        inlet0 = Inlet_operator(domain, line0, Q0)
#        inlet1 = Inlet_operator(domain, line1, Q1)
#
#        # Enquiry point [ 19.    2.5] is contained in two domains in 4 proc case
#        boyd_box0 = Boyd_box_operator(domain,
#                          end_points=[[9.0, 2.5],[19.0, 2.5]],
#                          losses=1.5,
#                          width=1.5,
#                          apron=5.0,
#                          use_momentum_jet=True,
#                          use_velocity_head=False,
#                          manning=0.013,
#                          verbose=False)
    
    #######################################################################

    ##-----------------------------------------------------------------------
    ## Evolve system through time
    ##-----------------------------------------------------------------------

    for t in domain.evolve(yieldstep = 2.0, finaltime = 20.0):
        if myid == 0 and verbose:
            domain.write_time()

        #print domain.volumetric_balance_statistics()
    
        stage = domain.get_quantity('stage')


        if boyd_pipe0 is not None and verbose : boyd_pipe0.print_timestepping_statistics()
 
        #for i in range(samples):
        #    if tri_ids[i] >= 0:                
        #        if verbose: print 'P%d tri %d, value = %s' %(myid, i, stage.centroid_values[tri_ids[i]])
                    
        sys.stdout.flush()
 
        pass

    success = True

##-----------------------------------------------------------------------
## Assign/Test Control data
##-----------------------------------------------------------------------

    if not parallel:
        stage = domain.get_quantity('stage')

        for i in range(samples):
            assert(tri_ids[i] >= 0)
            control_data.append(stage.centroid_values[tri_ids[i]])
        
        if inlet0 is not None:
            control_data.append(inlet0.inlet.get_average_stage())
            control_data.append(inlet0.inlet.get_average_xmom())
            control_data.append(inlet0.inlet.get_average_ymom())
            control_data.append(inlet0.inlet.get_total_water_volume())
            control_data.append(inlet0.inlet.get_average_depth())

        if verbose: print 'P%d control_data = %s' %(myid, control_data)
    else:
        stage = domain.get_quantity('stage')
        
        for i in range(samples):
            if tri_ids[i] >= 0:
                local_success = num.allclose(control_data[i], stage.centroid_values[tri_ids[i]])
                success = success and local_success
                if verbose: 
                    print 'P%d tri %d, control = %s, actual = %s, Success = %s' %(myid, i, control_data[i], stage.centroid_values[tri_ids[i]], local_success) 
                
                
        if inlet0 is not None:
            inlet_master_proc = inlet0.inlet.get_master_proc()
            average_stage = inlet0.inlet.get_global_average_stage()
            average_xmom = inlet0.inlet.get_global_average_xmom()
            average_ymom = inlet0.inlet.get_global_average_ymom()
            average_volume = inlet0.inlet.get_global_total_water_volume()
            average_depth = inlet0.inlet.get_global_average_depth()

            if myid == inlet_master_proc:
                if verbose: 
                    print 'P%d average stage, control = %s, actual = %s' %(myid, control_data[samples], average_stage)

                    print 'P%d average xmom, control = %s, actual = %s' %(myid, control_data[samples+1], average_xmom)

                    print 'P%d average ymom, control = %s, actual = %s' %(myid, control_data[samples+2], average_ymom)

                    print 'P%d average volume, control = %s, actual = %s' %(myid, control_data[samples+3], average_volume)

                    print 'P%d average depth, control = %s, actual = %s' %(myid, control_data[samples+4], average_depth)


        assert(success)

    if parallel:
        finalize()

    return control_data