Ejemplo n.º 1
0
    def feature_types(self, print_tree=True):
        '''
        Returns a summary of the feature types represented in 
        the RefLoci database
        
        Parameters
        ----------
        print_tree : bool (default: True)
            If True, prints the result before returning. 

        Returns
        -------
        An anytree Node object containing the root node.

        '''
        raise NotImplementedError('This method is BUGGY')
        from anytree import Node, RenderTree
        cur = self._db.cursor()
        primary_ftypes = [x[0] for x in cur.execute('''
            SELECT DISTINCT feature_type 
            FROM primary_loci p 
                JOIN loci l ON p.LID = l.LID;
        ''').fetchall()]
        ndict = dict()
        root = Node(self.name)
        for n in primary_ftypes:
            ndict[n] = Node(n,parent=root)
        ftypes = cur.execute('''
            SELECT DISTINCT p.feature_type,c.feature_type 
            FROM relationships r 
                JOIN loci p ON r.parent = p.LID 
                JOIN loci c ON r.child = c.LID;
        ''').fetchall()
        # Create Nodes
        for p,c in ftypes:
            ndict[c] = Node(c)
        for p,c in ftypes:
            if p in ndict:
                ndict[c].parent = ndict[p]
            else:
                ndict[c].parent = root
        if print_tree is True:
            print(RenderTree(root))
        return root
Ejemplo n.º 2
0
from anytree import Node, RenderTree, findall, LevelOrderIter, PostOrderIter
import matplotlib.pyplot as plt
from tkinter import *
from tkinter import filedialog

q = 0
ct = 0
root = []
tdict = {}  # the dictionary keeps track of all attributes of a document
keys = {
}  # contains the parent of each attribute. This is used to retrive data at any particular level
c = 1
r = []
nc = -1
fptr = {}
lvl = Node('level')
y = 0
root.append(Node("root" + str(ct), parent=lvl))
ct = ct + 1
threshold = 0.2
clusters = [[[]] for row in range(8)]  #holds all the cluster details
cluster_avg_len = [[0] for row in range(8)]
cluster_count = [0 for row in range(8)]
# cluster_avg_len[0].append(0) #set the avg len of first cluster to be zero
similarity_count = [[[]] for row in range(8)
                    ]  #to store attribute_count and match_count
sim_matrix = [[[]] for row in range(8)]
MyTreeRoot = Node('Root')
OptimalTree = Node('Optimal_Root')
cluster_tree = Node('clusterRoot')
highest_fscore = 0
Ejemplo n.º 3
0
from anytree import Node, RenderTree, find, Resolver
import os

file1 = {"id": 0, "datanodes": [], "size": 32, "metadata": "grrrrrrrrr"}
file2 = {"id": 1, "datanodes": [], "size": 12, "metadata": "dhdjhsgdhjas"}
file3 = {"id": 2, "datanodes": [], "size": 12, "metadata": "dhdjhsgdhjas"}

root = Node("root")
pics = Node('pics', parent=root)
docs = Node('docs', parent=root)
sum14 = Node('summer 2014', parent=pics)
sum14_1 = Node('pic1', parent=sum14, file=file1)
sum14_2 = Node('pic2', parent=sum14, file=file2)
report = Node('report', parent=docs, file=file3)

print(os.path.basename('/dsf/sdf/zhopa'))

# path = 'summer 2014/pic1'
# r = Resolver('name')
# print(r.get(pics, path))
#
# #
#
# path = '/root/pics/summer 2014'
# r = Resolver('name')
# resp = r.get(root, path)
# new_node = Node('new file', parent=resp, file={"id": 3})
#
# new_node = Node('new file2', parent=resp, file={"id": 4})
#
#
Ejemplo n.º 4
0
namesWeightsRelations = {}

for prog in topLevelTuple:
    if len(re.findall('[a-z]', prog[1])) > 1:
        namesWeightsRelations[re.findall('[a-z]+', prog[0])[0]] = (int(
            re.findall('\d+', prog[1])[0]), re.findall('[a-z]+', prog[1]))
    else:
        namesWeightsRelations[re.findall('[a-z]+', prog[0])[0]] = (int(
            re.findall('\d+', prog[1])[0]), '')

thisModule = sys.modules[__name__]

for name, values in zip(namesWeightsRelations.keys(),
                        namesWeightsRelations.values()):
    setattr(thisModule, name, Node(name))

for name, values in zip(namesWeightsRelations.keys(),
                        namesWeightsRelations.values()):
    if values[1] != '':
        for key in values[1]:
            globals()[key].parent = globals()[name]

for pre, fill, node in RenderTree(lfkqyf.root):
    print("%s%s" % (pre, node.name))

for i in range(4):
    myLegs = [node.name for node in PreOrderIter(lfkqyf.root.children[i])]

    total = 0
Ejemplo n.º 5
0
def index_file(filename):
    stack = list()
    tree = list()
    is_root = True
    line_num = 0

    # Check file type
    if not (filename.endswith('.lib') or filename.endswith('.lib.gz')):
        return None

    print("Indexing " + filename)

    # Pick open function
    open_func = gzip.open if filename.endswith(".gz") else open

    f = open_func(filename, 'r')
    for line in f:
        line_num += 1
        if '{' in line:
            # Do we need to check for attributes?
            if not line.split('(')[0].strip() in NO_ATTRIBUTES:
                group = line.split('(')[0].strip()
                true_line = line_num
                attributes = set()
                while True:
                    line = f.next()
                    line_num += 1
                    # Grab attributes (they have : in them) or grab indexes for vectors
                    if ':' in line or ('index' in line and 'vector' in group):
                        attributes.add(line.strip().replace('\t', ''))
                    elif line.strip() == '':
                        continue
                    else:
                        break

                # Build up group name with attributes
                name = group.split('(')[0].strip() + '{'
                for attribute in attributes:
                    if ':' in attribute:
                        if not attribute.split(
                                ':')[0].strip() in IGNORE_ATTRIBUTES:
                            name += attribute.replace(' ', '').replace(
                                ':', '=').replace(';', '').replace('"',
                                                                   '') + ', '
                    else:
                        name += attribute.replace(' ', '').replace(
                            ';', '').replace('"', '') + ', '
                name = name.strip().strip(',') + '}'

                # Add group node to tree
                tree.append(Node(name, parent=stack[-1], start_line=true_line))
                stack.append(tree[-1])

                # Need to check if current line is a new group (it probably is if we just got group attributes)
                if '{' in line:
                    name = line.strip().split('{')[0].strip()
                    tree.append(
                        Node(name, parent=stack[-1], start_line=line_num))
                    stack.append(tree[-1])
                elif '}' in line:
                    index = tree.index(stack[-1])
                    tree[index].end_line = line_num
                    stack.pop()
            else:
                # Add a group that doesn't need attributes
                name = line.strip().split('{')[0].strip()

                # Check if we need (or can) use the cell name parser
                if 'cell' in name:
                    cell = name.split('(')[1].strip(')').strip()
                    if all_parsers != None:
                        try:
                            name = 'cell(' + all_parsers.parse_cell_name(
                                cell) + ')'
                            name = name.replace('%(', '[[').replace(')s', ']]')
                        except AttributeError:
                            name = line.strip().split('{')[0].strip()
                    elif cell_name_parser != None:
                        try:
                            name = 'cell(' + cell_name_parser.parse_cell_name(
                                cell) + ')'
                            name = name.replace('%(', '[[').replace(')s', ']]')
                        except AttributeError:
                            name = line.strip().split('{')[0].strip()
                if is_root:
                    name = name.split('(')[0]
                    tree.append(Node(name, start_line=line_num))
                    stack.append(tree[0])
                    is_root = False
                else:
                    tree.append(
                        Node(name, parent=stack[-1], start_line=line_num))
                    stack.append(tree[-1])
        elif '}' in line:
            # Reached end of group, record endline and remove from stack
            index = tree.index(stack[-1])
            tree[index].end_line = line_num
            stack.pop()

    f.close()
    print("Indexing Complete!")
    return tree
    def generate_tree(tree_root, depth, no_of_children, participants=None):
        # todo -- check how to pass depth and no of children automatically and by arguments
        # height and depth not fitting number of a participants
        if not (participants is None):
            if len(participants) > no_of_children**(depth - 1):
                return "error message"  # todo -- customize the error message
        # optimization to scale tree
        if depth is None and no_of_children is None and participants is None:
            depth = 1
            no_of_children = 2
        elif depth is None and no_of_children is None and participants is not None:
            # or set up tree size
            no_of_children = 2
            depth = math.ceil(math.log2(len(participants)))
        else:
            pass

        current_parents = [tree_root]
        node_count = 1
        temp_parent = []
        for d in range(depth):
            for parent in current_parents:
                for k in range(no_of_children):
                    children_node = TreeNode(node_count)
                    children_tree_node = Node(str(node_count),
                                              parent=parent,
                                              tree_node=children_node)
                    children_tree_node.is_root
                    temp_parent.append(children_tree_node)
                    node_count += 1
            current_parents.clear()
            current_parents = list(temp_parent)
            temp_parent.clear()

        if participants is None:
            for leaf in current_parents:
                Node("empty",
                     parent=leaf.parent,
                     leaf_node=LeafNode(leaf.tree_node.node_id))
                leaf.parent = None
                leaf.tree_node = None
            return tree_root, current_parents, node_count

        ################################################################

        leaf_nodes = current_parents
        participant_count = 0
        node_id = node_count
        for leaf in leaf_nodes:
            if not (participants is None):
                if participant_count < len(participants):
                    node_id += 1
                    # adding topic to the participant
                    # does it make sense to do this at key manager level?
                    # participants[participant_count].add_topic(topic) # topic commented
                    leaf_node = LeafNode(node_id,
                                         participants[participant_count])
                    Node(participants[participant_count].participant_id,
                         parent=leaf.parent,
                         leaf_node=leaf_node)
                    leaf.parent = None
                    leaf.tree_node = None
                    participant_count += 1
                else:
                    break
        for p in range(participant_count, len(leaf_nodes)):
            Node("empty",
                 parent=leaf_nodes[p].parent,
                 leaf_node=LeafNode(leaf_nodes[p].tree_node.node_id))
            leaf_nodes[p].parent = None
            leaf_nodes[p].tree_node = None
            # leaf_node = leaf[0].tree_node
        return tree_root
Ejemplo n.º 7
0
 def testExpand(self, state, has_children, child_states):
     leaf_node = Node(id={1: state},
                      numVisited=1,
                      sumValue=1,
                      actionPrior=0.5,
                      isExpanded=False)
Ejemplo n.º 8
0
 def make_node(self, name, parent, url):
     node = Node(name=name, parent=parent, url=url)
     node.root_path = self.root_path(node)
     return node
Ejemplo n.º 9
0
def tree_example():
    from anytree import Node, RenderTree

    udo = Node(name='nsubj')
    marc = Node(name='dobj', parent=udo)
    lian = Node(parent=marc, name='amod')
    dan = Node(parent=udo, name='nmod:for')
    jet = Node(parent=dan, name='nsubj')
    jan = Node(parent=dan, name='compound')
    joe = Node(parent=dan, name='det')

    print(udo)
    Node('/Udo')
    print(joe)
    Node('/Udo/Dan/Joe')

    for pre, fill, node in RenderTree(udo):
        print("%s%s%s" % (pre, node.name, fill))

    print(dan.children)
    (Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))
Ejemplo n.º 10
0
def sort_contours_by_level(contours):
    """Sort contours into parts.
        Returns a sorted list of lists, where inner lists represent contours at the same depth,
        and the outer list organizes inner lists by decreasing depth.
    """
    # TODO: handle pre-closed contours. (Circles, ellipses, etc.)
    parts = []
    height_interval_to_contours = {
    }  # items are contour lists, since multiple contours can have the same height interval.
    contour_tree = IntervalTree()
    heights = set()
    contours_by_name = {}
    nested_contour_tree_items = {}  # dict of contour nodes

    # Find min/max heights of all contours.
    layout_y_min = math.inf
    layout_y_max = -math.inf
    # Also find the left/right extremes to find global corners.
    layout_x_min = math.inf
    layout_x_max = -math.inf
    for contour in contours:
        # Store contours by name.
        contours_by_name[contour.name()] = contour
        # Store contour in a dict by height interval. Some contours can have the same height, so use lists.
        # This data structure is the input to build the interval tree.
        if (contour.y_min, contour.y_max) in height_interval_to_contours:
            height_interval_to_contours[(contour.y_min,
                                         contour.y_max)].append(contour)
        else:
            height_interval_to_contours[(contour.y_min,
                                         contour.y_max)] = [contour]
        # Update the extremes of the layout.
        if contour.y_min < layout_y_min:
            layout_y_min = contour.y_min
        if contour.y_max > layout_y_max:
            layout_y_max = contour.y_max
        if contour.x_min < layout_x_min:
            layout_x_min = contour.x_min
        if contour.x_max > layout_x_max:
            layout_x_max = contour.x_max
        # Add the contour's midpoint to the height intervals.
        heights.add((contour.y_max - contour.y_min) / 2 + contour.y_min)

    # Create interval tree.
    print("Packing Contours into Interval Tree for sorting speedup.")
    contour_tree.build(layout_y_min, layout_y_max, height_interval_to_contours)

    # Construct all contour in-out relationships.
    print("Constructing in-out contour relationships.")
    for height in heights:
        # Extract all the contours that exist at this height.
        contour_subset_lists = contour_tree.query(height)
        contour_subset_lists = [item[1] for item in contour_subset_lists
                                ]  # remove the keys.
        contour_subset_lists = [
            item for sublist in contour_subset_lists for item in sublist
        ]  # flatten remaining lists.

        # Build the In-Out relationship tree.
        for a_index, contour_a in enumerate(contour_subset_lists):
            contour_a_node = nested_contour_tree_items.get(
                contour_a.name(), Node(contour_a.name()))
            for b_index, contour_b in enumerate(contour_subset_lists[a_index +
                                                                     1:]):
                point_a = (contour_a.start_x, contour_a.start_y)
                point_b = (contour_b.start_x, contour_b.start_y)
                # Check if a is in b. If so, insert pair relationship into tree.
                if point_in_contour(point_a, contour_b):
                    # contour_b is contour_a's parent. Add back to the dict
                    contour_b_node = nested_contour_tree_items.get(
                        contour_b.name(), Node(contour_b.name()))
                    contour_a_node.parent = contour_b_node
                    nested_contour_tree_items[
                        contour_b.name()] = contour_b_node
                # Check if b is in a. If so, insert pair relationship into tree.
                elif point_in_contour(point_b, contour_a):
                    # contour_a is contour_b's parent. Add back to the dict
                    contour_b_node = nested_contour_tree_items.get(
                        contour_b.name(), Node(contour_b.name()))
                    contour_b_node.parent = contour_a_node
                    nested_contour_tree_items[
                        contour_b.name()] = contour_b_node
            nested_contour_tree_items[contour_a.name()] = contour_a_node

    print("Organizing contours by depth")
    # A dict, keyed by level (int) of contours that live at that level.
    depth_lists = OrderedDict()

    # Contours may be sorted in multiple separate trees.
    # Pull contours out of the dict representation and put into lists sorted by depths
    while len(nested_contour_tree_items):
        # Find the root(s) and print out the tree from there.
        node = None
        # Pull an arbitrary item out from the nesting.
        node_key = list(nested_contour_tree_items.keys())[0]
        # Get the root of this tree.
        node = nested_contour_tree_items[node_key]
        while node.parent is not None:
            node = node.parent
        # https://anytree.readthedocs.io/en/latest/api/anytree.iterators.html#anytree.iterators.levelordergroupiter.LevelOrderGroupIter
        list_o_lists = [[node.name for node in children]
                        for children in LevelOrderGroupIter(node)]
        for index, depth_list in enumerate(list_o_lists):
            old_depth_list = depth_lists.get(index, [])
            for contour_name in depth_list:
                old_depth_list.append(contours_by_name[contour_name])
                del nested_contour_tree_items[contour_name]
            depth_lists[index] = old_depth_list

    # Return serialized tree and a starting point.
    return [v for k, v in depth_lists.items()], (layout_x_max, layout_y_max)
Ejemplo n.º 11
0
from anytree import Node, RenderTree
import random
import sys
udo = Node(4)
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)


#Converts board so it is easier to navigate when evaluating board positions
def board_convert(board):
	new_board = {}

	x_start = 143
	y_start = 280

	for i in range(1, 7):
		

		for j  in range(1, 8):
			new_board[j, i] = board[x_start, y_start]
			x_start += 36
		x_start = 143
		y_start -= 33

	return new_board
#addes game piece to column
def add_game_piece(board, column, color):
	for i in range(0, 7):
		if board[column, i] == 'None':
Ejemplo n.º 12
0
# K)YOU
# I)SAN""".split("\n")

orbit_pairs = []
nodes = {}

for orbit_pair in input:
    if not orbit_pair:
        break
    pairs = orbit_pair.split(')')
    parent = pairs[0]
    child = pairs[1]

    orbit_pairs.append((parent, child))
    if parent not in nodes:
        nodes[parent] = Node(parent)

    if child not in nodes:
        nodes[child] = Node(child)

for parent, child in orbit_pairs:
    nodes[child].parent = nodes[parent]

for node in nodes.values():
    if node.is_root:
        print(node)
#
print(RenderTree(nodes['COM'], style=AsciiStyle()))

##
# Part 1
Ejemplo n.º 13
0
def add_children(nodes, child_id, parent_node):
    node = Node(child_id, parent=parent_node)

    if child_id in nodes:
        for child in nodes[child_id]:
            add_children(nodes, child, node)
Ejemplo n.º 14
0
 def update_stack(self, statement, key):
     self.stack.extend([Node(g, parent=statement) for g in self.p_table[key]][::-1])
Ejemplo n.º 15
0
f = Node("f")
b = Node("b", parent=f)
a = Node("a", parent=b)
d = Node("d", parent=b)
c = Node("c", parent=d)
e = Node("e", parent=d)
g = Node("g", parent=f)
i = Node("i", parent=g)
h = Node("h", parent=i)
print(RenderTree(f, style=AsciiStyle()).by_attr())
'''
#pip3 install --user anytree
from anytree import Node, RenderTree

files, folders = [], []
root = Node(input('Enter root file name: '))
users = list(map(str, input('Enter the users\' name: ').split()))
[
    files.append(
        list(map(str,
                 input('Enter the files for user ' + i + ' : ').split())))
    for i in users
]
print()
[
    folders.append(
        list(map(str,
                 input('Enter the folders for user ' + i + ' : ').split())))
    for i in users
]
print()
Ejemplo n.º 16
0
 def __init__(self):
     self.root = Node('DTL')
    def add_participant(tree_root, participant, changed_root_keys=None):

        empty_nodes = findall_by_attr(tree_root, "empty")
        if len(empty_nodes) is 0:
            # tree structure change --
            # get all the leaf nodes and maximum node id
            leaf_nodes = tree_root.leaves
            last_node_id = int(leaf_nodes[len(leaf_nodes) -
                                          1].leaf_node.node_id)
            participant_counter = 0
            added_participant = None
            message_details_dict_list = []
            # change tree structure
            # children_node = TreeNode(node_count)
            # children_tree_node = Node(str(node_count), parent=parent, tree_node=children_node)
            for leaf in leaf_nodes:
                new_parent_tree_node = TreeNode(leaf.leaf_node.node_id)
                new_parent = Node(leaf.leaf_node.node_id,
                                  parent=leaf.parent,
                                  tree_node=new_parent_tree_node)
                # two children for this node -- or todo no of children of this root_tree --
                # 1st child has the same participant and the second child is empty
                last_node_id += 1
                leaf.leaf_node.name = str(last_node_id)
                leaf.parent = new_parent
                # send the changed structure message only to the participants affected
                # newly added participant messages will be handled by registration protocol not here

                message_detail = {
                    "message_name": "change_tree_structure" + "/" + leaf.name,
                    "encryption_key": leaf.leaf_node.participant.pairwise_key,
                    "new_ancestor_key": new_parent.tree_node.node_key
                }
                message_details_dict_list.append(message_detail)

                # first check if the participant is already added
                if participant_counter is 0:
                    # add new participant here
                    last_node_id += 1
                    new_leaf_node = LeafNode(str(last_node_id), participant)
                    added_participant = Node(participant.participant_id,
                                             parent=new_parent,
                                             leaf_node=new_leaf_node)
                    participant_counter = 1

                else:  # add empty node else
                    # if participant is already added 2nd child empty
                    # Node("empty", parent=leaf_nodes[p].parent, leaf_node=LeafNode(leaf_nodes[p].tree_node.node_id))
                    last_node_id += 1
                    Node("empty",
                         parent=new_parent,
                         leaf_node=LeafNode(str(last_node_id)))

            return tree_root, added_participant, message_details_dict_list

        else:

            empty_node = empty_nodes[0]
            # participant.add_topic(topic)  # include code for user-permissions  # or better move this to top
            new_leaf_node = LeafNode(empty_node.leaf_node.node_id, participant)
            added_participant = Node(participant.participant_id,
                                     parent=empty_node.parent,
                                     leaf_node=new_leaf_node)
            # dis-allocate the old empty node after attaching the new one to the tree
            empty_node.parent = None
            empty_node.leaf_node = None

            # find ancestors of the added participant and change their keys
            ancestor_list = added_participant.ancestors
            for ancestor in ancestor_list:
                if ancestor.is_root and changed_root_keys is not None:
                    ancestor.tree_node.root_node_keys = changed_root_keys.copy(
                    )
                else:
                    ancestor.tree_node.reset_key()
                # change the keys of root node here

            # code to add details about the messages to be sent
            # first construct messages for participant and its siblings
            message_details_dict_list = []
            # adding message for the newly added participant to be decided based on other implementations
            # todo
            """message_detail = {"message_name": str(added_participant.parent.tree_node.node_id) + "/" + str(added_participant.leaf_node.node_id),
                              "encryption_key": added_participant.leaf_node.participant.pairwise_key,
                              "changed_parent_key": added_participant.parent.tree_node.node_key}
            message_details_dict_list.append(message_detail)"""
            siblings = added_participant.siblings
            for sibling in siblings:
                if sibling.leaf_node.participant is not None:
                    message_detail = {  # "message_name": str(sibling.parent.tree_node.node_id) + "/" + str(sibling.leaf_node.node_id),
                        "message_name":
                        str(sibling.parent.tree_node.node_id) + "/" +
                        str(sibling.leaf_node.participant.participant_id) +
                        "__changeParent__" +
                        str(sibling.parent.tree_node.node_id),
                        "encryption_key":
                        sibling.leaf_node.participant.pairwise_key,
                        "changed_parent_key":
                        sibling.parent.tree_node.node_key
                    }
                    message_details_dict_list.append(message_detail)

            # construct messages for ancestors and their siblings
            for ancestor in range(len(ancestor_list) - 2, -1, -1):
                children = ancestor_list[ancestor].children
                for child in children:
                    message_detail = {
                        "message_name":
                        str(child.parent.tree_node.node_id) + "/" +
                        str(child.tree_node.node_id) + "__changeParent__" +
                        str(child.parent.tree_node.node_id),
                        "encryption_key":
                        child.tree_node.node_key
                    }
                    if child.parent.is_root and changed_root_keys is not None:
                        message_detail[
                            "changed_parent_key"] = child.parent.tree_node.root_node_keys
                    else:
                        message_detail[
                            "changed_parent_key"] = child.parent.tree_node.node_key
                    # "changed_parent_key": child.parent.tree_node.node_key}
                    # if last i.e. root node then encryption keys is the list of changed pub-sub keys
                    # add that condition for the last one. when ancestor = 0 basically.
                    message_details_dict_list.append(message_detail)

            return tree_root, added_participant, message_details_dict_list
Ejemplo n.º 18
0
from anytree import Node, RenderTree  #importamos la libreria anytree que nos servira para crear arboles

udo = Node("Udo")  #creamos la raiz de nuestro arbol ROOT
marc = Node("Marc", parent=udo)  #nodo hijo de udo
lian = Node("Lian", parent=marc)  #nodo hijo de marc
dan = Node("Dan", parent=udo)  #nodo hijo de udo
jet = Node("Jet", parent=dan)  #nodo hijo de dan
jan = Node("Jan", parent=dan)  #nodo hijo de dan
joe = Node("Joe", parent=dan)  #nodo hijo de dan

for pre, fill, node in RenderTree(
        udo
):  #le decimos a la libreria que rellene los nodos y los ordene utilizando la raiz udo
    print(
        "%s%s" % (pre, node.name)
    )  #imprimimos el arbol generado a partir de la raiz udo con los nodos hijos
    def delete_participant(tree_root, participant, changed_root_keys=None):
        # find the node
        participant_to_be_removed = findall_by_attr(
            tree_root, participant.participant_id)[0]

        # find all ancestors of this participant and change keys
        ancestor_list = participant_to_be_removed.ancestors
        for ancestor in ancestor_list:
            if ancestor.is_root and changed_root_keys is not None:
                ancestor.tree_node.root_node_keys = changed_root_keys.copy()
            else:
                ancestor.tree_node.reset_key()

        # code to add details about the messages to be sent
        # first construct messages for to-be-deleted participant's siblings
        message_details_dict_list = []
        siblings = participant_to_be_removed.siblings
        for sibling in siblings:
            if sibling.leaf_node.participant is not None:
                message_detail = {
                    # "message_name": str(sibling.parent.tree_node.node_id) + "/" + str(sibling.leaf_node.node_id),
                    "message_name":
                    str(sibling.parent.tree_node.node_id) + "/" +
                    str(sibling.leaf_node.participant.participant_id) +
                    "__changeParent__" + str(sibling.parent.tree_node.node_id),
                    "encryption_key":
                    sibling.leaf_node.participant.pairwise_key,
                    "changed_parent_key":
                    sibling.parent.tree_node.node_key
                }
                message_details_dict_list.append(message_detail)
        # construct messages for ancestors and their siblings
        for ancestor in range(len(ancestor_list) - 2, -1, -1):
            children = ancestor_list[ancestor].children
            for child in children:
                message_detail = {
                    "message_name":
                    str(child.parent.tree_node.node_id) + "/" +
                    str(child.tree_node.node_id) + "__changeParent__" +
                    str(child.parent.tree_node.node_id),
                    "encryption_key":
                    child.tree_node.node_key
                }
                if child.parent.is_root and changed_root_keys is not None:
                    message_detail[
                        "changed_parent_key"] = child.parent.tree_node.root_node_keys
                else:
                    message_detail[
                        "changed_parent_key"] = child.parent.tree_node.node_key
                    # "changed_parent_key": child.parent.tree_node.node_key}
                message_details_dict_list.append(message_detail)

        # delete the participant and add empty node there
        # moved this to manager class
        # participant.delete_topic(topic)

        new_leaf_node = LeafNode(participant_to_be_removed.leaf_node.node_id)
        new_leaf_node.participant = None
        new_empty_node = Node("empty",
                              parent=participant_to_be_removed.parent,
                              leaf_node=new_leaf_node)

        # dis-allocate the participant node after attaching the new empty node to the tree
        participant_to_be_removed.parent = None
        participant_to_be_removed.leaf_node = None

        return tree_root, new_empty_node, message_details_dict_list
Ejemplo n.º 20
0
 def adopt_orphan_nodes(self):
     self.root = Node('jinjas')
     for node in self.orphan_nodes:
         node.parent = self.root
Ejemplo n.º 21
0
class ID3:

    # Step 1: create the root node
    T = Node("Root")

    def __init__(self, S, A):
        self.algorithm(S, A, self.T)

    def algorithm(self, S, A, T):
        # Step 2: if all the examples in S are of the same class c, returns the tree T labeled with class c
        c = self.areAllElementOfSetEqual(S)
        if c != "":
            return Node(c, parent=T)

        # Step 3: if A is empty, returns the tree T labeled with the majority class c in S
        if not A:
            c = self.majorityClassOfSet(S, A)
            return Node(c, parent=T)

        # Step 4: let a belongs to A such that a is optimal in A
        a = self.optimalAttribute(S, A)

        # Get all the values that the optimal attribute a can assume in S
        values = self.valuesByAttribute(S, a)

        # Update the tree T
        T_prime = Node(a, parent=T, value=values)

        # Remove the current optimal attribute a from A
        A.remove(a)

        # Make a recursive call for each value that the optimal attribute a can assume in S
        for i in range(len(values)):

            # Step 5: partition the set S according to the possible values that the optimal attribute a can assume
            S_prime = self.partition(S, a, values[i])

            # Step 6: recursive call of ID3
            self.algorithm(S_prime, A, T_prime)

    # Check if all the elements of a set are of the same class c
    def areAllElementOfSetEqual(self, S):
        c = S[0]["Sport"]
        for i in range(1, self.cardinality(S)):
            if S[i]["Sport"] != c:
                return ""
        return c

    # Determine the majority class in S
    def majorityClassOfSet(self, S, A):
        classes = {}

        for s in S:
            if s["Sport"] not in classes:
                classes[s["Sport"]] = 1
            else:
                classes[s["Sport"]] += 1

        return A[int(np.argmax(classes))]

    # Determine the optimal attribute in A
    def optimalAttribute(self, S, A):

        # If the |A| = 1, consider the only one attribute in A as optimal
        if self.cardinality(A) == 1:
            return A[0]

        information_gains = []

        for a in A:
            information_gains.append(self.informationGain(S, a))

        # Determine which attribute has the highest Information Gain
        index = np.argmax(information_gains)

        return A[int(index)]

    # Get the cardinality of a set
    def cardinality(self, S):
        return len(S)

    # Calculate the Information Gain
    def informationGain(self, S, x):
        values = {}
        summation = 0

        for s in S:
            if s[x] not in values:
                values[s[x]] = 1
            else:
                values[s[x]] += 1

        for v in values:
            # Get the examples from S by the value v of the attribute x
            s_x = self.examplesByAttribute(S, x, v)

            summation += (values[v] / self.cardinality(S)) * self.entropy(
                s_x, method="cross-entropy")

        return self.entropy(S, method="cross-entropy") - summation

    # Get the examples from the set S with attribute x and value v
    def examplesByAttribute(self, S, x, v):
        s_x = []
        for s in S:
            if s[x] == v:
                s_x.append(s)
        return s_x

    # Calculate the entropy
    def entropy(self, S, method):
        if method == "cross-entropy":
            return self.crossEntropy(S)
        if method == "gini-impurity":
            return self.giniImpurity(S)

    # Calculate the Cross-Entropy
    def crossEntropy(self, S):
        classes = {}

        for s in S:
            if s["Sport"] not in classes:
                classes[s["Sport"]] = 1
            else:
                classes[s["Sport"]] += 1

        E = 0
        for c in classes:
            p_c = classes[c] / self.cardinality(S)
            E += p_c * log(p_c, 2)

        return -E

    # Calculate the Gini Impurity
    def giniImpurity(self, S):
        classes = {}

        for s in S:
            if s["Sport"] not in classes:
                classes[s["Sport"]] = 1
            else:
                classes[s["Sport"]] += 1

        GI = 0
        for c in classes:
            p_c = classes[c] / self.cardinality(S)
            GI += p_c * p_c

        return 1 - GI

    # Get the values that an attribute x can assume in S
    def valuesByAttribute(self, S, x):
        values = []

        for i in range(self.cardinality(S)):
            if S[i][x] not in values:
                values.append(S[i][x])

        return values

    # Partition the set S by the value v that an attribute x can assume in S
    def partition(self, S, x, v):
        partitions = []

        for i in range(self.cardinality(S)):
            if S[i][x] == v:
                partitions.append(S[i])

        return partitions
Ejemplo n.º 22
0
def references_algorithm(start_msg):
    # type: (Message) -> t.List[Message]
    from anytree import Node, LoopError, PreOrderIter

    # find references
    #    # first try message ids in the references header line
    #    # if that fails use the first valid messageid in the in-reply-to header line as the only valid parent
    #    # if the reply to doesn't work then there are no references
    references = start_msg.references or start_msg.in_reply_to[:1]

    # determine if a message is a reply or a forward
    #    #  A message is considered to be a reply or forward if the base
    #    #  subject extraction rules, applied to the original subject,
    #    #  remove any of the following: a subj-refwd, a "(fwd)" subj-
    #    #  trailer, or a subj-fwd-hdr and subj-fwd-trl

    #    # see https://tools.ietf.org/html/rfc5256#section-2.1 for base subject extraction
    #    # see https://tools.ietf.org/html/rfc5256#section-5 for def of abnf

    # PART 1 A from https://tools.ietf.org/html/rfc5256 REFERENCES
    # using the message ids in the messages references link corresponding messages
    # first is parent of second, second is parent of third, etc...
    # make sure there are no loops
    # if a message already has a parent don't change the existing link
    # if no message exists with the reference then create a dummy message
    # TODO not sure how to check valid message ids

    # nodes which don't have parents
    orphan_nodes = set()  # type: t.Set[Node]
    current = None
    # Map of msg ids to Nodes
    node_map = {}  # type: t.Dict[str, Node]
    for msg_id in references:
        node = node_map.get(msg_id, Node(msg_id))
        node_map[msg_id] = node
        # if we are in a child and the child does not already have a parent
        # try to add the node
        if current is not None and node.parent is None:
            try:
                node.parent = current
            except LoopError:
                current = None
        # otherwise the node is a new orphan
        if current is None:
            current = node
            orphan_nodes.append(current)

    # nodes which are not in our database
    msg_map = {
        node_map[msg_id]:
        message_from_message_id(msg_id, start_msg._imap_account,
                                start_msg.folder, start_msg._imap_client)
        for msg_id in references
    }  # t.Dict[Node, t.Optional[Message]]
    dummy_nodes = {node
                   for node, msg in msg_map.iteritems()
                   if msg is None}  # t.Set[Node]

    # PART 1 B
    # create a parent child link between the last reference and the current message.
    # if the current message already has a parent break the current parent child link unless this would create a loop
    node = node_map.get(start_msg._message_id,
                        Node(start_msg._message_id))  # type: Node
    node_map[start_msg._message_id] = node
    try:
        node.parent = current
    except LoopError:
        pass

    # PART 2
    # make any messages without parents children of a dummy root
    root = Node('root')  # type: Node
    for orphan in orphan_nodes:
        orphan.parent = root

    # PART 3
    # prune dummy messages from the tree
    #    # If it is a dummy message with NO children, delete it.
    #    #
    #    # If it is a dummy message with children, delete it, but
    #    # promote its children to the current level.  In other
    #    # words, splice them in with the dummy's siblings.
    #    #
    #    # Do not promote the children if doing so would make them
    #    # children of the root, unless there is only one child.
    #    #
    for node in list(PreOrderIter(root)):
        if node not in dummy_nodes:
            continue
        dummy_node = node
        # if there are no children
        if not dummy_node.children:
            dummy_node.parent = None
        # promote children but only promote at most one child to the root
        elif dummy_node.parent != root or len(dummy_node.children) == 1:
            for child in dummy_node.children:
                child.parent = dummy_node.parent

    # PART 4
    # Sort the messages under the root (top-level siblings only)
    # by sent date as described in section 2.2.  In the case of a
    # dummy message, sort its children by sent date and then use
    # the first child for the top-level sort.
    def sortkey(node):
        if node not in dummy_nodes:
            return msg_map[node].date
        node.children = sorted(node.children, key=sortkey)
        # assumes we have no dummies in the middle of the tree
        return min(msg_map[n].date for n in node.children)

    root.children = sorted(root.children, key=sortkey)
    assert isinstance(root.children, list)
Ejemplo n.º 23
0
    def __init__(self, paragraph_list, symbol_width, symbol_height,
                 WORD_EMBEDDINGS):
        """
        Creates a tree structure that outlines the nested structure of the document

        Args:
            paragraph_list (list): list of paragraphs with { 'text':.. , 'bounding_box': ...}
            symbol_width (float): avg pixel width of symbol
            symbol_height (float): avg pixel height of symbol 

        Attributes:
            root_node (Node): the root node of the tree structure
            annotation_list (list): the extra paragraphs that don't fit within the tree structure
            symbol_width (float): avg pixel width of symbol
            symbol_height (float): avg pixel height of symbol 

        TODO:
            * Rotate image so that the text can be aligned before sending it to the vision api
            * Deal with differen columns on the same page
            * Deal with multiple pages and combining pages together
        """
        self.root_node = Node('root')
        self.annotation_list = []
        self.symbol_width = symbol_width
        self.symbol_height = symbol_height
        self.WORD_EMBEDDINGS = WORD_EMBEDDINGS

        # Removes paragraphs that does not contain letters or numbers
        paragraph_list = [
            paragraph for paragraph in paragraph_list
            if re.search('\w', paragraph['text'])
        ]
        layer_num = 1
        parent_nodes = [self.root_node]
        prev_layer_list = []
        prev_top_left_x_val = 0

        # loops through layers until there are no more
        while paragraph_list:
            top_left_idx = Document.find_top_left(paragraph_list,
                                                  prev_top_left_x_val)
            top_left_x_val = paragraph_list[top_left_idx]['bounding_box'][
                'top_left']['x'] if top_left_idx is not None else 0

            # If next top left value is extremely far away from the previous top left value,
            # break loop and set remaining values as annotations
            if top_left_idx is None or (prev_top_left_x_val != 0 and
                                        top_left_x_val > prev_top_left_x_val +
                                        (20 * self.symbol_width)):
                for paragraph in paragraph_list:
                    sentences = Sentence.get_sentences_from_paragraph(
                        paragraph['word_list'], paragraph['entity_list'],
                        paragraph['syntax_list'])
                    self.annotation_list.append({
                        'sentences': sentences,
                        'paragraph': paragraph,
                        'text': paragraph['text']
                    })
                break

            # Add child nodes to the previous layer
            if parent_nodes != []:
                layer_list = self.find_nodes_in_same_layer(
                    paragraph_list, top_left_x_val)
                parent_node_idx_list = self.determine_parent_node(
                    layer_list, prev_layer_list)
                new_parent_nodes = []
                for i, paragraph in enumerate(layer_list):
                    sentences = Sentence.get_sentences_from_paragraph(
                        paragraph['word_list'], paragraph['entity_list'],
                        paragraph['syntax_list'])
                    child_node = Node(
                        "layer: %s, child_num: %s" % (layer_num, i),
                        parent=parent_nodes[parent_node_idx_list[i]],
                        sentences=sentences,
                        paragraph=paragraph,
                        text=paragraph['text'])
                    new_parent_nodes.append(child_node)

                # Update parent nodes list:
                parent_nodes = new_parent_nodes
                prev_layer_list = layer_list
                prev_top_left_x_val = top_left_x_val
                layer_num += 1
            else:
                for paragraph in paragraph_list:
                    sentences = Sentence.get_sentences_from_paragraph(
                        paragraph['word_list'], paragraph['entity_list'],
                        paragraph['syntax_list'])
                    self.annotation_list.append({
                        'sentences': sentences,
                        'paragraph': paragraph,
                        'text': paragraph['text']
                    })
                break
Ejemplo n.º 24
0
    def __init__(self, urdf_object, progressbar=None):
        """
        Description
        -----------

        Robot Constructor. You can construct a robot from an URDF Object.

        Parameters
        ----------

        urdf_object : URDF.URDF
            URDF Object from the URDF library

        progressbar : PyQt5.QtWidgets.QProgressBar or None, optional
                      default is None
            Progressbar to update during the robot creation (used in GUI)
            If it is None, no progressbar is updated

        Examples
        --------

        Examples
        --------

        You can create a robot from an URDF file using the parser :

        >>> from URDF import URDF
        >>> urdf_obj = URDF("./Examples/example_0.urdf")
        >>> robot_obj = RobotURDF(urdf_obj)

        """

        # 1 - Robot Name .....................................................

        if 'name' in urdf_object.robot[0].keys():
            self.name = urdf_object.robot[0]['name']
        else:
            self.name = "no_name"

        # 2 - Robot Links ....................................................

        self.links = []

        for i in range(urdf_object.nlinks()):
            self.links.append(LinkURDF(urdf_object, i))

        # 3 - Robot Joints ...................................................

        self.joints = []

        for i in range(urdf_object.njoints()):
            if progressbar is not None:
                progressbar.setProperty("value",
                                        100 * (i + 1) / urdf_object.njoints())
            self.joints.append(JointURDF(urdf_object, i))

        # 4 - Tree Representation ............................................

        # Creating a Node per Link . . . . . . . . . . . . . . . . . . . . . .

        all_link_nodes = []
        for i, _ in enumerate(self.links):
            all_link_nodes.append(Node('link_' + str(i)))

        # Creating a Node per Joint  . . . . . . . . . . . . . . . . . . . . .

        all_joint_nodes = []
        for i, joint in enumerate(self.joints):
            all_joint_nodes.append(
                Node('joint_' + str(i), parent=all_link_nodes[joint.parent]))

        # Setting parents for Link Nodes . . . . . . . . . . . . . . . . . . .

        root_link_id = 0
        for i, _ in enumerate(all_link_nodes):
            if self.links[i].is_root:
                root_link_id = i
                continue
            all_link_nodes[i].parent = (
                all_joint_nodes[self.links[i].child_joints[0]])

        # Setting Global Tree
        self.tree = RenderTree(all_link_nodes[root_link_id])

        self.mass = 0
        for link in self.links:
            self.mass += link.mass

        super().__init__()
Ejemplo n.º 25
0
def p_inicializacao_variaveis(p):
  '''
    inicializacao_variaveis : atribuicao
  '''

  p[0] = Node('inicializacao_variaveis', value = 'inicializacao_variaveis', children = [p[1]])
Ejemplo n.º 26
0
from anytree import Node, RenderTree

udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)
for pre, fill, node in RenderTree(udo):
    print("%s%s" % (pre, node.name))
Ejemplo n.º 27
0
def setTrees(MyTreeRoot, cluster_tree, t_range, t_val):
    for i in range(t_range):
        Node(t_val, parent=MyTreeRoot)
        Node(t_val, parent=cluster_tree)
        t_val = (t_val * 10 + 1) / 10
Ejemplo n.º 28
0
    def assemble_import_tree(path: str) -> Node:
        '''
        Assemble a bookmark tree structure from `Bookmarks` file to be able
        to either display or correctly import/merge the structure into
        internal bookmarks database.
        '''
        with open(path, 'rb') as fbookmark:
            raw = json.loads(fbookmark.read().decode('utf-8'))

        trees = []
        if 'bookmark_bar' in raw['roots']:
            folder_items = OperaImporter.walk_folders(
                raw['roots']['bookmark_bar'], 0)
            trees.append(
                assemble_folder_tree(items=folder_items,
                                     key='parent_folder_id',
                                     node_type=Folder))
        if 'custom_root' in raw['roots']:
            raw_custom_sorted = sorted(raw['roots']['custom_root'].items(),
                                       key=lambda item: item[0])
            for _, value in raw_custom_sorted:
                folder_items = OperaImporter.walk_folders(value, 0)
                trees.append(
                    assemble_folder_tree(items=folder_items,
                                         key='parent_folder_id',
                                         node_type=Folder))
        if 'other' in raw['roots']:
            folder_items = OperaImporter.walk_folders(raw['roots']['other'], 0)
            trees.append(
                assemble_folder_tree(items=folder_items,
                                     key='parent_folder_id',
                                     node_type=Folder))
        if 'synced' in raw['roots']:
            folder_items = OperaImporter.walk_folders(raw['roots']['synced'],
                                                      0)
            trees.append(
                assemble_folder_tree(items=folder_items,
                                     key='parent_folder_id',
                                     node_type=Folder))

        # printable folder tree
        folder_tree = Node(name=0,
                           node_type=Folder,
                           id=0,
                           folder_name='<no title>',
                           parent_folder_id=None,
                           item={})
        for tree in trees:
            tree.parent = folder_tree
            tree.parent_folder_id = folder_tree.id  # pylint: disable=no-member

        bookmarks = []
        for folder in traverse(folder_tree):
            bookmarks += OperaImporter.walk_bookmarks(folder.item, folder.id)
            delattr(folder, 'item')

        # printable folder+bookmark tree
        bookmark_tree = assemble_bookmark_tree(items=bookmarks,
                                               key='folder_id',
                                               folder_tree_root=folder_tree,
                                               node_type=Bookmark)
        return bookmark_tree
Ejemplo n.º 29
0
#these node need to be declared as var, so i tried to stack them in the list to not have to name them
listeNode = []
#create a list and filling it witht he data needed for Nodes (word, position, position of its parent)
listeDependency = []
for i in range(len(annotatedText["tokens"])):
    annotatedWord = annotatedText["tokens"][i]
    Dependency = (annotatedWord["dependencyEdge"]["headTokenIndex"])
    Text = (annotatedWord["text"]["content"])
    listeDependency.append((Text, i, Dependency))

#trouver le root
for i in range(len(listeDependency)):
    if listeDependency[i][1] == listeDependency[i][
            2]:  #if a word is its own parent, it's the root
        text = listeDependency[i][0]
        indexRoot = listeDependency[i][2]
        root = Node(text)  #Node of the root (one arg only, no parent)
        listeNode.append(root)
        break
        print(listeDependency)

# WiP : i should do each node, just some scratch right now
#for i in range(len(listeDependency)):
#    if listeDependency[i][2] :
#        listeNode.append(Node(listeDependency[i][0],parent=listeNode[0]))
#how you're suppoed to create a Node : chat = Node("chat", parent=root)

#you print the Tree
for pre, fill, node in RenderTree(root):
    print("%s%s" % (pre, node.name))
Ejemplo n.º 30
0
def condFPtree(CPBlist, transRecord, minSupp):
    CFPTlist = []

    print('\n################### Conditional FP Tree ###################')
    for eachRow in CPBlist:
        print('\n------------------- ' + eachRow[0] + ' -------------------')
        nodes = []
        nodePath = ''
        pathList = []
        count = 0
        root = Node('Null', count=None)

        for eachPath in eachRow[1]:
            node = root
            if eachPath[0] != 'null':
                pathCount = eachPath[1]
                nodes = eachPath[0].split(',')
                for eachNode in nodes:
                    if node.is_leaf:
                        child_node = Node(eachNode,
                                          parent=node,
                                          count=pathCount)
                        node = child_node
                    else:
                        foundFlag = False
                        for child in node.children:
                            if child.name == eachNode:
                                child.count += pathCount
                                node = child
                                foundFlag = True
                        if foundFlag == False:
                            child_node = Node(eachNode,
                                              parent=node,
                                              count=pathCount)
                            node = child_node
        showTree(root)
        print()
        for eachNode in root.descendants:
            if eachNode.is_leaf:
                if eachNode.name != 'Null':
                    check = False
                    while check == False:
                        if eachNode.count >= int(minSupp):
                            tempList = []
                            parentList = []

                            try:
                                nodePath = re.search(
                                    '(.+?/Null/' +
                                    eachNode.name + ')\', count',
                                    str(eachNode.path[-1])).group(1)
                            except Exception as e:
                                nodePath = re.search(
                                    '(.+?/Null/.+?' +
                                    eachNode.name + ')\', count',
                                    str(eachNode.path[-1])).group(1)

                            nodePath = nodePath.replace('Node(\'/Null/',
                                                        '').replace('/', ',')
                            tempNodePath = re.search(
                                '(.+?/' + eachNode.parent.name + ')',
                                str(eachNode.path[-1])).group(1)
                            tempNodePath = tempNodePath.replace(
                                'Node(\'/Null/', '').replace('/', ',')
                            # if eachNode.parent.count != eachNode.count and eachNode.parent.count >= int(minSupp):
                            #     parentCheck = False
                            #     currentNode = eachNode
                            #     while parentCheck == False:
                            #         nodePathParent = re.search('(.+?/' + currentNode.parent.name + ')\', count', str(currentNode.parent.path[-1])).group(1)
                            #         nodePathParent = nodePath.replace('Node(\'/Null/', '').replace('/', ',')
                            #         tempList.append(nodePathParent)
                            #         tempList.append(currentNode.parent.count)
                            #         if currentNode.parent.parent.count != currentNode.count and currentNode.parent.parent.count >= int(minSupp) and currentNode.parent.parent.name != 'Null':
                            #             currentNode = currentNode.parent
                            #         else:
                            #             parentCheck = True
                            #     tempList.append(nodePath)
                            #     tempList.append(eachNode.count)
                            #     pathList.append(tempList)
                            parentList = tempNodePath.split(',')
                            parentCheck = False
                            for element in parentList:
                                for tempNode in root.descendants:
                                    if element == tempNode.name:
                                        if tempNode.count >= int(
                                                minSupp
                                        ) and tempNode.count != eachNode.count:
                                            parentCheck = True
                                            tempList.append(tempNode.name)
                                            tempList.append(tempNode.count)
                            if parentCheck == True:
                                tempList.append(eachNode.name)
                            else:
                                tempList.append(nodePath)
                            tempList.append(eachNode.count)
                            pathList.append(tempList)
                            check = True
                        else:
                            if eachNode.parent.name == 'Null':
                                check = True
                            else:
                                eachNode = eachNode.parent

        for everyRow in pathList:
            if len(everyRow) == 2:
                print(everyRow[0] + ': ' + str(everyRow[1]))
            else:
                count = 1
                for each in everyRow:
                    if count % 2 != 0:
                        print(each, end=': ')
                    else:
                        if count == len(everyRow):
                            print(each, end='')
                        else:
                            print(each, end=', ')
                    count += 1
            print()

        CFPTlist.append([eachRow[0], pathList])

    freqPattern(CFPTlist, transRecord)
Ejemplo n.º 31
0
def create_ontology_graph():
    # Construct ISA trees from triples

    graph = rdflib.Graph()
    graph.parse(os.path.join(ontology_dir, 'inferred_vrd'))

    ontology_labels_nodes = {}
    ontology_labels_equivalent_tmp = Set([])
    ontology_labels_equivalent = Set([])

    for s, p, o in graph.triples((None, URIRef("http://www.w3.org/2002/07/owl#equivalentProperty"), None)):
        # print s, " -> ", p, " -> ", o
        if "http://" in s and "http://" in o:

            subj_label = str(s.split("#")[1])
            obj_label = str(o.split("#")[1])
            ontology_labels_equivalent.add(subj_label)
            ontology_labels_equivalent.add(obj_label)

            if ontology_labels_nodes:
                new_node = True
                for node_label in ontology_labels_nodes.keys():

                    if subj_label in node_label.split(","):
                        ontology_labels_equivalent_tmp.remove(node_label)
                        ontology_labels_nodes[node_label].name = ontology_labels_nodes[node_label].name + "," + obj_label
                        ontology_labels_equivalent_tmp.add(ontology_labels_nodes[node_label].name)
                        ontology_labels_nodes[ontology_labels_nodes[node_label].name] = ontology_labels_nodes[
                            node_label]
                        del ontology_labels_nodes[node_label]
                        new_node = False

                    elif obj_label in node_label.split(","):
                        ontology_labels_equivalent_tmp.remove(node_label)
                        ontology_labels_nodes[node_label].name = ontology_labels_nodes[node_label].name + "," + subj_label
                        ontology_labels_equivalent_tmp.add(ontology_labels_nodes[node_label].name)
                        ontology_labels_nodes[ontology_labels_nodes[node_label].name] = ontology_labels_nodes[node_label]
                        del ontology_labels_nodes[node_label]
                        new_node = False
                if new_node:
                    ontology_labels_nodes[subj_label + "," + obj_label] = Node(subj_label + "," + obj_label)
                    ontology_labels_equivalent_tmp.add(subj_label + "," + obj_label)
            else:
                ontology_labels_nodes[subj_label + "," + obj_label] = Node(subj_label + "," + obj_label)
                ontology_labels_equivalent_tmp.add(subj_label + "," + obj_label)

    for s, p, o in graph.triples((None, URIRef("http://www.w3.org/2000/01/rdf-schema#subPropertyOf"), None)):
        #print s, " -> ", p, " -> ", o

        if "http://" in s and "http://" in o:

            subj_label = str(s.split("#")[1])
            obj_label = str(o.split("#")[1])

            subj_node_name = ""
            obj_node_name = ""
            for node_label in ontology_labels_equivalent_tmp:
                if subj_label in node_label.split(","):
                    subj_node_name = node_label
                    continue
                if obj_label in node_label.split(","):
                    obj_node_name = node_label
                    continue
            if subj_node_name and obj_node_name:
                ontology_labels_nodes[subj_node_name].parent = ontology_labels_nodes[obj_node_name]

            if subj_label not in ontology_labels_equivalent and obj_label not in ontology_labels_equivalent:

                if subj_label not in ontology_labels_nodes:
                    ontology_labels_nodes[subj_label] = Node(subj_label)
                if obj_label not in ontology_labels_nodes:
                    ontology_labels_nodes[obj_label] = Node(obj_label)

                ontology_labels_nodes[subj_label].parent = ontology_labels_nodes[obj_label]

            if subj_label in ontology_labels_equivalent and obj_label not in ontology_labels_equivalent:
                if obj_label not in ontology_labels_nodes:
                    ontology_labels_nodes[obj_label] = Node(obj_label)

                # retrieve subj node
                for node_label in ontology_labels_nodes.keys():
                    if subj_label in node_label.split(","):
                        ontology_labels_nodes[node_label].parent = ontology_labels_nodes[obj_label]

            if subj_label not in ontology_labels_equivalent and obj_label in ontology_labels_equivalent:
                if subj_label not in ontology_labels_nodes:
                    ontology_labels_nodes[subj_label] = Node(subj_label)

                # retrieve obj node
                for node_label in ontology_labels_nodes.keys():
                    if obj_label in node_label.split(","):
                        ontology_labels_nodes[subj_label].parent = ontology_labels_nodes[node_label]

    tree_list = []
    for node_label in ontology_labels_nodes:
        if ontology_labels_nodes[node_label].is_root:
            tree_list.append(ontology_labels_nodes[node_label])
    return tree_list, ontology_labels_equivalent_tmp
Ejemplo n.º 32
0
 def __init__(self,formula):
     formula=formula.replace(" ","")
     formula=self.clean_mess_in_formula(formula)
     self.node_list= [Node(formula)]
     self.generate_tree(formula, self.node_list[0])