Ejemplo n.º 1
0
    def setUp(self):
        numVertices = 500
        numFeatures = 49

        self.means = rand.randn(numFeatures)
        self.vars = rand.randn(numFeatures, numFeatures)
        self.vars = self.vars + self.vars.T #Make vars symmetric
        p1 = 0.1

        self.egoGenerator = EgoGenerator()
        vList = self.egoGenerator.generateIndicatorVertices(numVertices, self.means, self.vars, p1)
        sGraph = SparseGraph(vList)

        p2 = 0.1
        k = 5

        #Create the graph edges according to the small world model
        graphGen = SmallWorldGenerator(p2, k)
        self.sGraph = graphGen.generate(sGraph)

        edges = sGraph.getAllEdges()

        for i in range(edges.shape[0]):
            sGraph.addEdge(edges[i, 0], edges[i, 1], numpy.random.rand())

        #Now learn using an edge label predictor
        lmbda = 0.01
        alterRegressor = PrimalRidgeRegression(lmbda)
        egoRegressor = PrimalRidgeRegression(lmbda)
        self.predictor = EgoEdgeLabelPredictor(alterRegressor, egoRegressor)
        self.predictor.learnModel(sGraph)

        self.egoSimulator = EgoSimulator2(self.sGraph, self.predictor)

        #Define a classifier which predicts transfer if gender of ego is female
        class DummyClassifier(object):
            def __init(self):
                pass

            def learnModel(self, graph):
                pass 

            def predictEdges(self, graph, edges):
                y = numpy.zeros((edges.shape[0]))

                for i in range(edges.shape[0]):
                    V = graph.getVertexList().getVertices(list(range(0, graph.getNumVertices())))
                    if V[edges[i, 0], 0] == 0:
                        y[i] = 1
                    else:
                        y[i] = -1
                return y

        self.dc = DummyClassifier()
Ejemplo n.º 2
0
    def setUp(self):
        numVertices = 500
        numFeatures = 49 
        
        self.means = rand.randn(numFeatures)
        self.vars = rand.randn(numFeatures, numFeatures)
        self.vars = self.vars + self.vars.T #Make vars symmetric
        p1 = 0.1
        
        self.egoGenerator = EgoGenerator()
        vList = self.egoGenerator.generateIndicatorVertices(numVertices, self.means, self.vars, p1)
        sGraph = SparseGraph(vList)
        
        p2 = 0.1 
        k = 5 
        
        #Create the graph edges according to the small world model 
        graphGen = SmallWorldGenerator(p2, k)
        self.sGraph = graphGen.generate(sGraph)

        dataDir = PathDefaults.getDataDir() + "infoDiffusion/"
        matFileName = dataDir + "EgoAlterTransmissions1000.mat"
        sampleSize = 100
        egoAlterExamplesList = ExamplesList.readFromMatFile(matFileName)
        egoAlterExamplesList.setDefaultExamplesName("X")
        egoAlterExamplesList.setLabelsName("y")
        egoAlterExamplesList.randomSubData(sampleSize)

        X = egoAlterExamplesList.getDataField("X")
        y = egoAlterExamplesList.getDataField("y")

        #Now learn using NaiveBayes
        self.nb = NaiveBayes()
        self.nb.learnModel(X, y)
    
        self.egoSimulator = EgoSimulator(self.sGraph, self.nb)

        #Define a classifier which predicts transfer if gender is female
        class DummyClassifier(object):
            def __init(self):
                pass

            def classify(self, X):
                y = numpy.zeros((X.shape[0]))

                for i in range(X.shape[0]):
                    if X[i, 0] == 0:
                        y[i] = 1
                    else:
                        y[i] = -1
                return y

        self.dc = DummyClassifier()
Ejemplo n.º 3
0
class EgoSimulator2Test(unittest.TestCase):
    def setUp(self):
        numVertices = 500
        numFeatures = 49

        self.means = rand.randn(numFeatures)
        self.vars = rand.randn(numFeatures, numFeatures)
        self.vars = self.vars + self.vars.T #Make vars symmetric
        p1 = 0.1

        self.egoGenerator = EgoGenerator()
        vList = self.egoGenerator.generateIndicatorVertices(numVertices, self.means, self.vars, p1)
        sGraph = SparseGraph(vList)

        p2 = 0.1
        k = 5

        #Create the graph edges according to the small world model
        graphGen = SmallWorldGenerator(p2, k)
        self.sGraph = graphGen.generate(sGraph)

        edges = sGraph.getAllEdges()

        for i in range(edges.shape[0]):
            sGraph.addEdge(edges[i, 0], edges[i, 1], numpy.random.rand())

        #Now learn using an edge label predictor
        lmbda = 0.01
        alterRegressor = PrimalRidgeRegression(lmbda)
        egoRegressor = PrimalRidgeRegression(lmbda)
        self.predictor = EgoEdgeLabelPredictor(alterRegressor, egoRegressor)
        self.predictor.learnModel(sGraph)

        self.egoSimulator = EgoSimulator2(self.sGraph, self.predictor)

        #Define a classifier which predicts transfer if gender of ego is female
        class DummyClassifier(object):
            def __init(self):
                pass

            def learnModel(self, graph):
                pass 

            def predictEdges(self, graph, edges):
                y = numpy.zeros((edges.shape[0]))

                for i in range(edges.shape[0]):
                    V = graph.getVertexList().getVertices(list(range(0, graph.getNumVertices())))
                    if V[edges[i, 0], 0] == 0:
                        y[i] = 1
                    else:
                        y[i] = -1
                return y

        self.dc = DummyClassifier()


    def tearDown(self):
        pass


    #Don't really care about this function 
    def testAdvanceGraph(self):
        totalInfo = EgoUtils.getTotalInformation(self.sGraph)

        self.sGraph = self.egoSimulator.advanceGraph()
        totalInfo2 = EgoUtils.getTotalInformation(self.sGraph)

        #Test that the number of people who know information is the same or more
        logging.debug(totalInfo)
        logging.debug(totalInfo2)
        self.assertTrue(totalInfo2 >= totalInfo)

    def testFullTransGraph(self):
        #Create a simple graph and deterministic classifier
        numExamples = 10
        numFeatures = 3

        #Here, the first element is gender (say) with female = 0, male = 1
        vList = VertexList(numExamples, numFeatures)
        vList.setVertex(0, numpy.array([0,0,1]))
        vList.setVertex(1, numpy.array([1,0,0]))
        vList.setVertex(2, numpy.array([1,0,0]))
        vList.setVertex(3, numpy.array([1,0,0]))
        vList.setVertex(4, numpy.array([0,0,1]))
        vList.setVertex(5, numpy.array([0,0,1]))
        vList.setVertex(6, numpy.array([0,0,0]))
        vList.setVertex(7, numpy.array([1,0,0]))
        vList.setVertex(8, numpy.array([0,0,1]))
        vList.setVertex(9, numpy.array([1,0,0]))

        sGraph = SparseGraph(vList)
        sGraph.addEdge(0, 1, 1)
        sGraph.addEdge(0, 2, 1)
        sGraph.addEdge(0, 3, 1)
        sGraph.addEdge(4, 5, 1)
        sGraph.addEdge(4, 6, 1)
        sGraph.addEdge(6, 7, 1)
        sGraph.addEdge(6, 8, 1)
        sGraph.addEdge(6, 9, 1)

        simulator = EgoSimulator2(sGraph, self.dc)
        logging.debug("Writing out full transmission graph")
        transGraph = simulator.fullTransGraph()

        self.assertEquals(transGraph.isUndirected(), False)
        self.assertEquals(transGraph.getNumEdges(), 11)
        self.assertEquals(transGraph.getEdge(0,1), 1)
        self.assertEquals(transGraph.getEdge(0,2), 1)
        self.assertEquals(transGraph.getEdge(0,3), 1)
        self.assertEquals(transGraph.getEdge(4,5), 1)
        self.assertEquals(transGraph.getEdge(4,6), 1)
        self.assertEquals(transGraph.getEdge(5,4), 1)
        self.assertEquals(transGraph.getEdge(6,4), 1)
        self.assertEquals(transGraph.getEdge(6,7), 1)
        self.assertEquals(transGraph.getEdge(6,8), 1)
        self.assertEquals(transGraph.getEdge(6,9), 1)
        self.assertEquals(transGraph.getEdge(8,6), 1)

        #self.assertEquals(transGraph.getVertexList(), vList)
Ejemplo n.º 4
0
class EgoSimulatorTest(unittest.TestCase):
    def setUp(self):
        numVertices = 500
        numFeatures = 49 
        
        self.means = rand.randn(numFeatures)
        self.vars = rand.randn(numFeatures, numFeatures)
        self.vars = self.vars + self.vars.T #Make vars symmetric
        p1 = 0.1
        
        self.egoGenerator = EgoGenerator()
        vList = self.egoGenerator.generateIndicatorVertices(numVertices, self.means, self.vars, p1)
        sGraph = SparseGraph(vList)
        
        p2 = 0.1 
        k = 5 
        
        #Create the graph edges according to the small world model 
        graphGen = SmallWorldGenerator(p2, k)
        self.sGraph = graphGen.generate(sGraph)

        dataDir = PathDefaults.getDataDir() + "infoDiffusion/"
        matFileName = dataDir + "EgoAlterTransmissions1000.mat"
        sampleSize = 100
        egoAlterExamplesList = ExamplesList.readFromMatFile(matFileName)
        egoAlterExamplesList.setDefaultExamplesName("X")
        egoAlterExamplesList.setLabelsName("y")
        egoAlterExamplesList.randomSubData(sampleSize)

        X = egoAlterExamplesList.getDataField("X")
        y = egoAlterExamplesList.getDataField("y")

        #Now learn using NaiveBayes
        self.nb = NaiveBayes()
        self.nb.learnModel(X, y)
    
        self.egoSimulator = EgoSimulator(self.sGraph, self.nb)

        #Define a classifier which predicts transfer if gender is female
        class DummyClassifier(object):
            def __init(self):
                pass

            def classify(self, X):
                y = numpy.zeros((X.shape[0]))

                for i in range(X.shape[0]):
                    if X[i, 0] == 0:
                        y[i] = 1
                    else:
                        y[i] = -1
                return y

        self.dc = DummyClassifier()
        
    def tearDown(self):
        pass


    def testAdvanceGraph(self):    
        totalInfo = EgoUtils.getTotalInformation(self.sGraph)
                
        self.sGraph = self.egoSimulator.advanceGraph()     
        totalInfo2 = EgoUtils.getTotalInformation(self.sGraph)
        
        #Test that the number of people who know information is the same or more 
        self.assertTrue(totalInfo2 >= totalInfo)
        
        
    def testAdvanceGraph2(self):
        #Create a simple graph and deterministic classifier 
        numExamples = 10
        numFeatures = 3
        
        #Here, the first element is gender (say) with female = 0, male = 1 
        vList = VertexList(numExamples, numFeatures)
        vList.setVertex(0, numpy.array([0,0,1]))
        vList.setVertex(1, numpy.array([1,0,0]))
        vList.setVertex(2, numpy.array([1,0,0]))
        vList.setVertex(3, numpy.array([1,0,0]))
        vList.setVertex(4, numpy.array([0,0,1]))
        vList.setVertex(5, numpy.array([0,0,1]))
        vList.setVertex(6, numpy.array([0,0,0]))
        vList.setVertex(7, numpy.array([1,0,0]))
        vList.setVertex(8, numpy.array([0,0,1]))
        vList.setVertex(9, numpy.array([1,0,0]))
        
        sGraph = SparseGraph(vList)
        sGraph.addEdge(0, 1, 1)
        sGraph.addEdge(0, 2, 1)
        sGraph.addEdge(0, 3, 1)
        sGraph.addEdge(4, 5, 1)
        sGraph.addEdge(4, 6, 1)
        sGraph.addEdge(6, 7, 1)
        sGraph.addEdge(6, 8, 1)
        sGraph.addEdge(6, 9, 1)
        

            
        
        
        
        simulator = EgoSimulator(sGraph, self.dc)
        simulator.advanceGraph()
        
        
        
        self.assertEquals(simulator.getNumIterations(), 1)
        
        self.assertEquals(sGraph.getVertex(0)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(1)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(2)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(3)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(4)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(5)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(6)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(7)[numFeatures-1], 0)
        self.assertEquals(sGraph.getVertex(8)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(9)[numFeatures-1], 0)
        
        
        #Advance again and all egos have information 
        simulator.advanceGraph()
        
        self.assertEquals(simulator.getNumIterations(), 2)

        self.assertEquals(sGraph.getVertex(0)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(1)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(2)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(3)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(4)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(5)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(6)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(7)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(8)[numFeatures-1], 1)
        self.assertEquals(sGraph.getVertex(9)[numFeatures-1], 1)
        
        #Should be no change 
        simulator.advanceGraph()
        
        self.assertEquals(simulator.getNumIterations(), 3)
        
        #Check the correct alters are added at each step 
        self.assertTrue((simulator.getAlters(0) == numpy.array([1,2,3,6])).all())
        self.assertTrue((simulator.getAlters(1) == numpy.array([7,9])).all())
        self.assertTrue((simulator.getAlters(2) == numpy.array([])).all())

        #Check that the transmission graph is okay
        transGraph = simulator.getTransmissionGraph()
        self.assertEquals(transGraph.getNumVertices(), 9)
        self.assertEquals(transGraph.getNumEdges(), 7)
        self.assertEquals(transGraph.getAllVertexIds(), [0, 1, 2, 3, 4, 6, 7, 8, 9])

        for i in transGraph.getAllVertexIds():
            self.assertTrue((transGraph.getVertex(i) == sGraph.getVertex(i)).all())
        
    def testFullTransGraph(self):
        transGraph = self.egoSimulator.fullTransGraph()

        #Create a simple graph and deterministic classifier
        numExamples = 10
        numFeatures = 3

        #Here, the first element is gender (say) with female = 0, male = 1
        vList = VertexList(numExamples, numFeatures)
        vList.setVertex(0, numpy.array([0,0,1]))
        vList.setVertex(1, numpy.array([1,0,0]))
        vList.setVertex(2, numpy.array([1,0,0]))
        vList.setVertex(3, numpy.array([1,0,0]))
        vList.setVertex(4, numpy.array([0,0,1]))
        vList.setVertex(5, numpy.array([0,0,1]))
        vList.setVertex(6, numpy.array([0,0,0]))
        vList.setVertex(7, numpy.array([1,0,0]))
        vList.setVertex(8, numpy.array([0,0,1]))
        vList.setVertex(9, numpy.array([1,0,0]))

        sGraph = SparseGraph(vList)
        sGraph.addEdge(0, 1, 1)
        sGraph.addEdge(0, 2, 1)
        sGraph.addEdge(0, 3, 1)
        sGraph.addEdge(4, 5, 1)
        sGraph.addEdge(4, 6, 1)
        sGraph.addEdge(6, 7, 1)
        sGraph.addEdge(6, 8, 1)
        sGraph.addEdge(6, 9, 1)

        simulator = EgoSimulator(sGraph, self.dc)
        logging.debug("Writing out full transmission graph")
        transGraph = simulator.fullTransGraph()

        self.assertEquals(transGraph.isUndirected(), False)
        self.assertEquals(transGraph.getNumEdges(), 11)
        self.assertEquals(transGraph.getEdge(0,1), 1)
        self.assertEquals(transGraph.getEdge(0,2), 1)
        self.assertEquals(transGraph.getEdge(0,3), 1)
        self.assertEquals(transGraph.getEdge(4,5), 1)
        self.assertEquals(transGraph.getEdge(4,6), 1)
        self.assertEquals(transGraph.getEdge(5,4), 1)
        self.assertEquals(transGraph.getEdge(6,4), 1)
        self.assertEquals(transGraph.getEdge(6,7), 1)
        self.assertEquals(transGraph.getEdge(6,8), 1)
        self.assertEquals(transGraph.getEdge(6,9), 1)
        self.assertEquals(transGraph.getEdge(8,6), 1)

        self.assertEquals(transGraph.getVertexList(), vList)
      
    def testAdvanceGraph3(self):
        """ 
        This test will learn from a set of ego and alter pairs, then we will make predictions on 
        the pairs and see the results. The we test if the same results are present in a simulation.  
        """
        dataDir = PathDefaults.getDataDir() + "infoDiffusion/"
        matFileName = dataDir +  "EgoAlterTransmissions1000.mat"
        examplesList = ExamplesList.readFromMatFile(matFileName)
        examplesList.setDefaultExamplesName("X")
        examplesList.setLabelsName("y")
        
        logging.debug(("Number of y = +1: " + str(sum(examplesList.getSampledDataField("y") == 1))))
        logging.debug(("Number of y = -1: " + str(sum(examplesList.getSampledDataField("y") == -1))))
        
        #Standardise the examples 
        preprocessor = Standardiser()
        X = examplesList.getDataField(examplesList.getDefaultExamplesName())
        X = preprocessor.standardiseArray(X)
        examplesList.overwriteDataField(examplesList.getDefaultExamplesName(), X)
        
        classifier = MlpySVM(kernel='linear', kp=1, C=32.0)

        y = examplesList.getDataField("y")
        classifier.learnModel(X, y)
        predY = classifier.classify(X)
        logging.debug(("Number of y = +1: " + str(sum(examplesList.getSampledDataField("y") == 1))))
        logging.debug(("Number of y = -1: " + str(sum(examplesList.getSampledDataField("y") == -1))))

        sampledY = examplesList.getSampledDataField(examplesList.getLabelsName()).ravel()

        error = mlpy.err(sampledY, predY)
        sensitivity = mlpy.sens(sampledY, predY)
        specificity = mlpy.spec(sampledY, predY)
        errorP = mlpy.errp(sampledY, predY)
        errorN = mlpy.errn(sampledY, predY)
        
        logging.debug("--- Classification evaluation ---")
        logging.debug(("Error on " + str(examplesList.getNumExamples()) + " examples is " + str(error)))
        logging.debug(("Sensitivity (recall = TP/(TP+FN)): " + str(sensitivity)))
        logging.debug(("Specificity (TN/TN+FP): "  + str(specificity)))
        logging.debug(("Error on positives: "  + str(errorP)))
        logging.debug(("Error on negatives: "  + str(errorN)))
        
        sGraph = EgoUtils.graphFromMatFile(matFileName)

        #Notice that the data is preprocessed in the same way as the survey data 
        egoSimulator = EgoSimulator(sGraph, classifier, preprocessor)
        
        totalInfo = EgoUtils.getTotalInformation(sGraph)
        logging.debug(("Total number of people with information: " + str(totalInfo)))
        self.assertEquals(totalInfo, 1000)
        
        sGraph = egoSimulator.advanceGraph()
        
        totalInfo = EgoUtils.getTotalInformation(sGraph)
        logging.debug(("Total number of people with information: " + str(totalInfo)))
        self.assertEquals(totalInfo, 1000 + sum(predY == 1))
        
        altersList = egoSimulator.getAlters(0)
        predictedAlters = numpy.nonzero(predY == 1)[0]
        
        self.assertTrue((altersList == predictedAlters*2+1).all())