Ejemplo n.º 1
0
def face_rank(page):
    cover_id_list, name_list = get_cover_id_list(page)
    cover_content_list = get_cover_content_list(cover_id_list)
    for cover_content, name, ids in zip(cover_content_list, name_list,
                                        cover_id_list):
        ai_obj = apiutil.AiPlat(AppID, AppKey)
        rsp = ai_obj.face_detectface(cover_content, 0)
        if rsp['ret'] == 0:
            for face in rsp['data']['face_list']:
                if face['beauty'] > face_min_rank and face[
                        'gender'] < 50 and face['age'] < max_age:
                    print('{0}颜值通过 分值{1}  年龄{2}'.format(
                        name, face['beauty'], face['age']))
                    saveimage(cover_content, name)
        elif rsp['ret'] == -2147483636:
            print('{0}识别繁忙,重试'.format(name))
            ai_obj = apiutil.AiPlat('1106858595', 'bNUNgOpY6AeeJjFu')
            rsp = ai_obj.face_detectface(cover_content, 0)
            if rsp['ret'] == 0:
                for face in rsp['data']['face_list']:
                    if face['beauty'] > face_min_rank and face[
                            'gender'] < 50 and face['age'] < max_age:
                        print('{0}颜值通过 分值{1}  年龄{2}'.format(
                            name, face['beauty'], face['age']))
                        saveimage(cover_content, name)
            elif rsp['ret'] == -2147483636:
                print('{0}第二次识别失败,放弃识别'.format(name))
                saveerrorimage(cover_content, name)
            else:
                print('{2}识别出错,错误码{0},错信信息{1}'.format(rsp['ret'], rsp['msg'],
                                                      name))
        else:
            print('{2}识别出错,错误码{0},错信信息{1}'.format(rsp['ret'], rsp['msg'],
                                                  name))
Ejemplo n.º 2
0
def test_aai_ailab(text='今天天气怎么样'):
    speaker = 1
    for_mat = {"PCM": 1, "WAV": 2, "MP3": 3}
    volume = 0
    speed = 100
    #text = '今天天气怎么样'
    aht = 0
    apc = 58
    ai_obj = apiutil.AiPlat(app_id, app_key)

    print('----------------------SEND REQ----------------------')
    rsp = ai_obj.getAaiAiLab(speaker, for_mat['WAV'], volume, speed, text, aht,
                             apc)
    if rsp['ret'] == 0:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
        speech = rsp['data']['speech']
        speech = base64.b64decode(speech)
        md5sum = rsp['data']['md5sum']
        has_md5 = hashlib.md5(speech)
        speech_md5 = has_md5.hexdigest().upper()
        if md5sum == speech_md5:
            with open('./data/ailab.wav', 'wb') as f:
                f.write(speech)
        print('----------------------API SUCC----------------------')
    else:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
        print('----------------------API FAIL----------------------')
Ejemplo n.º 3
0
def Get_Nlp_TextTrans_api(str_text, type=0):
    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getNlpTextTrans(str_text, type)
    data_string = ''
    if rsp['ret'] == 0:
        data_string = rsp['data']['trans_text']
    return data_string
Ejemplo n.º 4
0
def Get_vision_ImgageToText_api(image_name, mediaId='1535646454'):
    with open(image_name, 'rb') as bin_data:
        image_data = bin_data.read()

    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.gevision_imgtotext(image_data, mediaId)
    text_string = ''
    if rsp['ret'] == 0:
        text_string = rsp['data']['text']
    return text_string
Ejemplo n.º 5
0
 def getWord(self,st):
     api_obj=apiutil.AiPlat(self.app_id,self.app_key)
     type=10000
     rsp = api_obj.getNlpTextChat(type,st)
     if rsp['ret'] == 0:
         print(rsp['data']['answer'])
     else:
         print("failed")
         print(rsp['ret'])
         print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
Ejemplo n.º 6
0
def Get_Nlp_WordCom_api(str_text):
    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getNlpWordCom(str_text)
    data_list = []
    if rsp['ret'] == 0:
        intent_dict = {'intent': rsp['data']['intent']}
        data_list.append(intent_dict)
        for obj in rsp['data']['com_tokens']:
            if obj['com_type'] < 50:
                data_list.append(obj)
    return data_list
Ejemplo n.º 7
0
def anso(questionS):
    str_question = questionS
    session = 10000
    ai_obj = apiutil.AiPlat(app_id, app_key)

    rsp = ai_obj.getNlpTextChat(session, str_question)
    if rsp['ret'] == 0:
        ask = (rsp['data'])['answer']
        return (ask)
    else:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
Ejemplo n.º 8
0
def get_Aai_ToTts_api(str_text, mediaId='451454543', Speech_ID=6, speed=0):
    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getAaiToTts(str_text, Speech_ID,
                             speed)  # 普通话男声	1  静琪女声	5  欢馨女声	6  欢馨女声	6
    if rsp['ret'] == 0:
        str_data = rsp['data']['voice']
        speech_chunk = base64.b64decode(str_data)
        file_name = './data/%s.mp3' % mediaId
        file_data = open(file_name, 'wb')
        file_data.write(speech_chunk)
        file_data.close()
    return file_name
Ejemplo n.º 9
0
def Get_vision_objectr_api(image_name, topk_number=1):
    with open(image_name, 'rb') as bin_data:
        image_data = bin_data.read()

    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getvision_objectr(image_data, topk_number)  # 返回结果个数(已按置信度倒排)
    data_lists = []
    if rsp['ret'] == 0:
        for obj in rsp['data']['object_list']:
            data_list = [str(obj['label_id']), str(obj['label_confd'])]
            data_lists.append(data_list)
    return data_lists
Ejemplo n.º 10
0
def Get_Ocr_GeneralOcr_api(image_name):
    with open(image_name, 'rb') as bin_data:
        image_data = bin_data.read()

    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getOcrGeneralocr(image_data)

    data_list = []
    if rsp['ret'] == 0:
        for i in rsp['data']['item_list']:
            data_list.append(i['itemstring'])
    return data_list
Ejemplo n.º 11
0
def test_nlp_texttrans():
    str_text = '今天天气怎么样'
    type = 0
    ai_obj = apiutil.AiPlat(app_id, app_key)

    print('----------------------SEND REQ----------------------')
    rsp = ai_obj.getNlpTextTrans(str_text, type)
    if rsp['ret'] == 0:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
        print('----------------------API SUCC----------------------')
    else:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
        print('----------------------API FAIL----------------------')
Ejemplo n.º 12
0
 def getWordTEST(self,st):
     print(time.asctime())
     print("NOW START TO TEST THE AI CHAT")
     api_obj=apiutil.AiPlat(self.app_id,self.app_key)
     type=10000
     rsp = api_obj.getNlpTextChat(type,st)
     if rsp['ret'] == 0:
         print("success")
         print(rsp['data']['answer'])
     else:
         print("failed")
         print(rsp['ret'])
         print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
Ejemplo n.º 13
0
def Get_face_sticker_api(image_name, mediaId, model=random.randint(1, 31)):
    with open(image_name, 'rb') as bin_data:
        image_data = bin_data.read()  # 原始图片的base64编码数据(原图大小上限500KB)

    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getfacesticker(image_data, model)
    image_file_name = "./image/%s_s.jpg" % mediaId
    if rsp['ret'] == 0:
        strs = rsp['data']['image']
        imgdata = base64.b64decode(strs)
        file_image = open(image_file_name, 'wb')
        file_image.write(imgdata)
        file_image.close()
    return image_file_name
Ejemplo n.º 14
0
def test_aai_wxasrs():
    seq = 0
    for_mat = 8
    rate = 16000
    bits = 16
    cont_res = 1
    once_size = 6400
    file_path = './data/wxasrs.mp3'
    f = open(file_path, 'rb')
    md5obj = hashlib.md5()
    md5obj.update(f.read())
    hash = md5obj.hexdigest()
    speech_id = str(hash).upper()
    f.close()
    f = open(file_path, 'rb')
    file_size = os.path.getsize(file_path)
    try:
        while True:
            chunk = f.read(once_size)
            if not chunk:
                break
            else:
                chunk_size = len(chunk)
                if (seq + chunk_size) == file_size:
                    end = 1
                else:
                    end = 0

            ai_obj = apiutil.AiPlat(app_id, app_key)

            print('----------------------SEND REQ----------------------')
            rsp = ai_obj.getAaiWxAsrs(chunk, speech_id, end, for_mat, rate,
                                      bits, seq, chunk_size, cont_res)
            seq += chunk_size
            if rsp['ret'] == 0:
                print(
                    json.dumps(rsp,
                               ensure_ascii=False,
                               sort_keys=False,
                               indent=4))
                print('----------------------API SUCC----------------------')
            else:
                print(
                    json.dumps(rsp,
                               ensure_ascii=False,
                               sort_keys=False,
                               indent=4))
                print('----------------------API FAIL----------------------')
    finally:
        f.close()
Ejemplo n.º 15
0
def ai_image(image_data):
    time.sleep(0.5)
    ai_obj = apiutil.AiPlat(App_ID, App_Key)
    print('-----------')
    rsp = ai_obj.getRenlianFenxi(image_data)
    if rsp['ret'] == 0:
        for i in rsp['data']['face_list']:
            print(i['beauty'])
        print('----')
        return int(i['beauty'])
    else:
        # print('无返回')
        print(rsp['ret'])
        return int(rsp['ret'])
Ejemplo n.º 16
0
    def recognize_image(self):

        #https://ai.qq.com/product/ocr.shtml#identify  优图ocr地址,免费申请
        app_id = 'appid'
        app_key = 'appkey'
        with open('./captcha.jpg', 'rb') as bin_data:
            image_data = bin_data.read()

        ai_obj = apiutil.AiPlat(app_id, app_key)

        print('----------------------SEND REQ----------------------')
        rsp = ai_obj.getOcrGeneralocr(image_data)
        print(rsp)
        return rsp
Ejemplo n.º 17
0
def Get_Nlp_ImageTrans_api(image_name,
                           mediaId='451454543',
                           source='auto',
                           target='auto'):
    with open(image_name, 'rb') as bin_data:
        image_data = bin_data.read()

    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getNlpImageTrans(image_data, mediaId, source, target)
    data_lists = []
    if rsp['ret'] == 0:
        for obj in rsp['data']['image_records']:
            data_list = [obj['source_text'], obj['target_text']]
            data_lists.append(data_list)
    return data_lists
Ejemplo n.º 18
0
def ocr(image):
    with open(image, 'rb') as bin_data:
        image_data = bin_data.read()

    ai_obj = apiutil.AiPlat(app_id, app_key)

    # print ('----------------------SEND REQ----------------------')
    rsp = ai_obj.getOcrGeneralocr(image_data)

    if rsp['ret'] == 0:
        for i in rsp['data']['item_list']:
            return i['itemstring']
        # print('----------------------API SUCC----------------------')
    else:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
        print('----------------------API FAIL----------------------')
def get_response(questionS):  #AI回复信息

    app_id = 'XXXX'  #控制台应用 APP ID
    app_key = 'XXXX'  #控制台 应用APP Key

    str_question = questionS  #传参
    session = 10000

    ai_obj = apiutil.AiPlat(app_id, app_key)  #调用SDK AiPlat()方法
    rsp = ai_obj.getNlpTextChat(session, str_question)  #调用SDK方法

    if rsp['ret'] == 0:  #判断参数问题,并反馈信息
        ask = (rsp['data'])['answer']
        print(ask)
    else:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
Ejemplo n.º 20
0
def soundTotext():
    app_key = '申请的Key'
    app_id = '申请的Id'

    seq = 0
    for_mat = 2
    rate = 16000
    bits = 16
    cont_res = 0
    once_size = 41000
    file_path = FILE_NAME

    #计算音频MD5
    with open(file_path, 'rb') as f:
        md5obj = hashlib.md5()
        md5obj.update(f.read())
        hash = md5obj.hexdigest()
        speech_id = str(hash).upper()

    #读取音频内容,每次41000字节
    f = open(file_path, 'rb')
    file_size = os.path.getsize(file_path)
    try:
        while True:
            chunk = f.read(once_size)
            if not chunk:
                break
            else:
                chunk_size = len(chunk)
                if (seq + chunk_size) == file_size:
                    end = 1
                else:
                    end = 0
            #初始化AIPlat接口
            ai_obj = apiutil.AiPlat(app_id, app_key)
            #调用语音识别-流式版(WeChat AI),传入参数
            rsp = ai_obj.getAaiWxAsrs(chunk, speech_id, end, for_mat, rate,
                                      bits, seq, chunk_size, cont_res)

            seq += chunk_size
            if rsp['ret'] == 0:
                return rsp['data']['speech_text']
            else:
                print("调用腾讯API失败")
                return None
    finally:
        f.close()
Ejemplo n.º 21
0
 def TransWord(self,st):
     print("翻译开始")
     api_obj=apiutil.AiPlat(self.app_id,self.app_key)
     type=0
     print("打开连接")
     rsp = api_obj.getNlpTextChat(type,st)
     if rsp['ret'] == 0:
         print("成功")
         print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
         print(rsp['data']['answer'])
     else:
         print("失败")
         print(rsp['ret'])
         #self.chatLOG(rsp['ret'])
         print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
         print("exit code 0")
         exit(0)
Ejemplo n.º 22
0
 def Start(self, content, sender):
     global authorg
     authorg = sender
     if content.startswith("echo") == False:
         return
     str_text = content.replace("echo ", "")
     ai_obj = apiutil.AiPlat(app_id, app_key)
     rsp = ai_obj.getAaiTts(str_text)
     print rsp['ret']
     if rsp['ret'] == 0:
         f = open('test.wav', 'wb')
         f.write(base64.b64decode(rsp["data"]["speech"]))
         f.close()
         res = commands.getoutput("omxplayer test.wav")
     else:
         res = 'API FAIL'
     sender.send(res)
Ejemplo n.º 23
0
def start(content):
    print "ok"
    print app_key
    print app_id
    if content.startswith("echo") == False:
        return
    str_text = content.replace("echo ","")
    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getAaiTts(str_text)
    print rsp['ret']
    if rsp['ret'] == 0:
        f = open('test.wav', 'wb')
        f.write(base64.b64decode(rsp["data"]["speech"]))
        f.close()
        res = commands.getoutput("omxplayer test.wav")
    else:
        res = 'API FAIL'
    print res
Ejemplo n.º 24
0
def test_aai_youtu():
    speed = 0
    text = '今天天气怎么样'
    model_type = 0
    ai_obj = apiutil.AiPlat(app_id, app_key)

    print('----------------------SEND REQ----------------------')
    rsp = ai_obj.getAaiYoutu(speed, text, model_type)
    if rsp['ret'] == 0:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
        speech = rsp['data']['voice']
        speech = base64.b64decode(speech)
        with open('./data/youtu.mp3', 'wb') as f:
            f.write(speech)
        print('----------------------API SUCC----------------------')
    else:
        print(json.dumps(rsp, ensure_ascii=False, sort_keys=False, indent=4))
        print('----------------------API FAIL----------------------')
Ejemplo n.º 25
0
    def acquiredata(self, word):
        if self.args == 'Tencent':
            app_id = '1106881265'  # You can replace it with your own app id.
            app_key = 'cdjZ2xHc3vRoQrUi'  # You can replace it with your own app key.
            type = 0  # 0:Automatic identification( https://ai.qq.com/doc/nlptrans.shtml )
            ai_obj = apiutil.AiPlat(app_id, app_key)
            return ai_obj.getNlpTextTrans(word, type)
        if self.args == 'Youdao':
            request = _YOUDAO_API + quote(self.word)
        elif self.args == 'Jinshan':
            request = _CIBA_API + quote(
                self.word) + "&type=json&key=0EAE08A016D6688F64AB3EBB2337BFB0"
        else:
            print("Invalid dictionary!")
        try:
            response = urllib.request.urlopen(request)
        except urllib.error.URLError:
            raise Exception(SNIPPET_ERROR_TIMEOUT)

        data = response.read().decode('utf-8')
        return (json.loads(data))
Ejemplo n.º 26
0
def image2json(image_file, json_dir):
    '''
    通过调用Tencent Common OCR API将图片转为json文件。
    :image_file: 待处理图像
    :json_dir: 用于保存json文件的文件夹
    :return None:
    '''
    # 获取对应的json文件名,并跳过已转换的图片
    json_file = os.path.split(image_file)[1]
    json_file = json_file.split('.')[0] + '.json'
    json_file = os.path.join(json_dir, json_file)
    if os.path.exists(json_file):
        return
    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getOcrGeneralocr(image_file)
    if rsp['ret'] == 16447: # 通用OCR识别错误
        print('No character in image %s' % image_file)
        return
    with open(json_file, 'w') as f:
        json.dump(rsp, f)
    print('Image %s has been converted to json.' % image_file)
Ejemplo n.º 27
0
def Get_face_detectface_api(image_name):
    with open(image_name, 'rb') as bin_data:
        image_data = bin_data.read()

    ai_obj = apiutil.AiPlat(app_id, app_key)
    rsp = ai_obj.getdetectface(image_data)
    detect_data_dict = []
    if rsp['ret'] == 0:
        for obj in rsp['data']['face_list']:
            if obj['gender'] > 50:
                gender = "男"
            else:
                gender = "女"

            if obj['expression'] < 10:
                smile = "黯然伤神"
            elif obj['expression'] < 20:
                smile = "半嗔半喜"
            elif obj['expression'] < 30:
                smile = "似笑非笑"
            elif obj['expression'] < 40:
                smile = "笑逐颜开"
            elif obj['expression'] < 60:
                smile = "喜上眉梢"
            elif obj['expression'] < 80:
                smile = "心花怒放"
            else:
                smile = "一笑倾城"

            detect_data_dict.append({
                '性别': gender,
                '年龄': obj['age'],
                '情感': smile,
                '魅力': obj['beauty']
            })
    return detect_data_dict
Ejemplo n.º 28
0
def get_Aai_WxAsrs_api(file_path,
                       for_mat=8,
                       rate=16000,
                       bits=16,
                       seq=0,
                       cont_res=1):
    once_size = 6400
    f = open(file_path, 'r')
    md5obj = hashlib.md5()
    md5obj.update(f.read())
    hash = md5obj.hexdigest()
    speech_id = str(hash).upper()
    f.close()
    f = open(file_path, 'rb')
    file_size = os.path.getsize(file_path)
    data_list = []
    try:
        while True:
            chunk = f.read(once_size)
            if not chunk:
                break
            else:
                chunk_size = len(chunk)
                if (seq + chunk_size) == file_size:
                    end = 1
                else:
                    end = 0
            ai_obj = apiutil.AiPlat(app_id, app_key)
            rsp = ai_obj.getAaiWxAsrs(chunk, speech_id, end, for_mat, rate,
                                      bits, seq, chunk_size, cont_res)
            seq += chunk_size
            if rsp['ret'] == 0:
                data_list.append(rsp['data']['speech_text'])
        return data_list
    finally:
        f.close()
Ejemplo n.º 29
0
    f.close()
    f = open(file_path, 'rb')
    file_size = os.path.getsize(file_path)
    try:
        while True:
            chunk = f.read(once_size)
            if not chunk:
                break
            else:
                chunk_size = len(chunk)
                if (seq + chunk_size) == file_size:
                    end = 1
                else:
                    end = 0

            ai_obj = apiutil.AiPlat(app_id, app_key)

            print '----------------------SEND REQ----------------------'
            rsp = ai_obj.getAaiWxAsrs(chunk, speech_id, end, for_mat, rate,
                                      bits, seq, chunk_size, cont_res)
            seq += chunk_size
            if rsp['ret'] == 0:
                print json.dumps(rsp,
                                 encoding="UTF-8",
                                 ensure_ascii=False,
                                 sort_keys=False,
                                 indent=4)
                print '----------------------API SUCC----------------------'
            else:
                print json.dumps(rsp,
                                 encoding="UTF-8",
Ejemplo n.º 30
0
#!encoding=utf-8

import apiutil
from PIL import Image
import json

AppID = '1106954466'
AppKey = '5u6ehLVCgxhznKhX'

ai_obj = apiutil.AiPlat(AppID, AppKey)
with open('1.png', 'rb') as bin_data:
    image_data = bin_data.read()

#rsp = ai_obj.getFaceInfo(image_data, 0)
rsp = ai_obj.getOcrGeneralocr(image_data)
print json.dumps(rsp)

exit()
if rsp['ret'] == 0:
    beauty = 0

    for face in rsp['data']['face_list']:
        #print(face)
        face_area = (face['x'], face['y'], face['x'] + face['width'],
                     face['y'] + face['height'])
        #print(face_area)
        img = Image.open("1.png")
        cropped_img = img.crop(face_area).convert('RGB')
        cropped_img.save('data/' + face['face_id'] + '.png')