Ejemplo n.º 1
0
def synth(*args, **kwargs):
    """
    NAME:
       synth
    PURPOSE:
       Generate model APOGEE spectra using MOOG: this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'moogsynth' for a direct interface to MOOG
    INPUT ARGUMENTS:
       lists with abundances wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros):
          [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N]
          [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N]
          ...
          [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N]
    INPUT KEYWORDS:
       LSF:
          lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web
          Either:
             xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo'
             dxlsf= (None) spacing of pixel offsets
          vmacro= (6.) macroturbulence to apply
       CONTINUUM:
          cont= ('aspcap') continuum-normalization to apply:
             None: no continuum normalization
             'true': Use the true continuum
             'aspcap': Use the continuum normalization method of ASPCAP DR12
             'cannon': Normalize using continuum pixels derived from the Cannon
       SYNTHESIS:
          linelist= (None) linelist to use; can be set to the path of a linelist file or to the name of an APOGEE linelist
          run_weedout= (False) if True, run MOOG weedout on the linelist first
          wmin, wmax, dw, width= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits, step, and width of calculation (see MOOG)
          lib= ('kurucz_filled') spectral library
       MODEL ATMOSPHERE PARAMETERS:
          Specify one of the following:
             (a) modelatm= (None) can be set to the filename of a model atmosphere or to a model-atmosphere instance (if filename, needs to end in .mod)
             (b) parameters of a KURUCZ model atmosphere:
                 (1) teff= (4500) Teff
                     logg= (2.5) logg
                     metals= (0.) metallicity
                     cm= (0.) carbon-enhancement
                     am= (0.) alpha-enhancement
                 (2) fparam= standard ASPCAP output format
                 lib= ('kurucz_filled') model atmosphere library
                 dr= (None) use model atmospheres from this data release
          vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam)
       MISCELLANEOUS:
          dr= return the path corresponding to this data release
    OUTPUT:
       spectra (nspec,nwave)
    HISTORY:
       2015-03-15 - Written - Bovy (IAS)
    """
    run_weedout = kwargs.pop('run_weedout', False)
    # Check that we have the LSF and store the relevant keywords
    lsf = kwargs.pop('lsf', 'all')
    if isinstance(lsf, str):
        xlsf, lsf = aplsf._load_precomp(dr=kwargs.get('dr', None), fiber=lsf)
        dxlsf = None
    else:
        xlsf = kwargs.pop('xlsf', None)
        dxlsf = kwargs.pop('dxlsf', None)
        if xlsf is None and dxlsf is None:
            raise ValueError(
                'xlsf= or dxlsf= input needs to be given if the LSF is given as an array'
            )
    vmacro = kwargs.pop('vmacro', 6.)
    # Parse continuum-normalization keywords
    cont = kwargs.pop('cont', 'aspcap')
    # Setup the model atmosphere
    modelatm = kwargs.pop('modelatm', None)
    tmpModelAtmDir = False
    # Parse fparam, if present
    fparam = kwargs.pop('fparam', None)
    if not fparam is None:
        kwargs['teff'] = fparam[paramIndx('TEFF')]
        kwargs['logg'] = fparam[paramIndx('LOGG')]
        kwargs['metals'] = fparam[paramIndx('METALS')]
        kwargs['am'] = fparam[paramIndx('ALPHA')]
        kwargs['cm'] = fparam[paramIndx('C')]
        kwargs['vm'] = 10.**fparam[paramIndx('LOG10VDOP')]
    if modelatm is None:  # Setup a model atmosphere
        modelatm = atlas9.Atlas9Atmosphere(teff=kwargs.get('teff', 4500.),
                                           logg=kwargs.get('logg', 2.5),
                                           metals=kwargs.get('metals', 0.),
                                           am=kwargs.get('am', 0.),
                                           cm=kwargs.get('cm', 0.),
                                           dr=kwargs.get('dr', None))
    if isinstance(modelatm, str) and os.path.exists(modelatm):
        modelfilename = modelatm
    elif isinstance(modelatm, str):
        raise ValueError('modelatm= input is a non-existing filename')
    else:  # model atmosphere instance
        # Need to write this instance to a file; we will run in a temp
        # subdirectory of the current directory
        tmpDir = tempfile.mkdtemp(dir=os.getcwd())
        tmpModelAtmDir = True  # need to remove this later
        modelfilename = os.path.join(tmpDir, 'modelatm.mod')
        modelatm.writeto(modelfilename)
    kwargs['modelatm'] = modelfilename
    try:
        # Check whether a MOOG version of the model atmosphere exists
        if not os.path.exists(modelfilename.replace('.mod', '.org')):
            # Convert to MOOG format
            convert_modelAtmosphere(**kwargs)
        # Run weedout on the linelist first if requested
        if run_weedout:
            linelistfilename = modelfilename.replace('.mod', '.lines')
            if not os.path.exists(linelistfilename):
                weedout(**kwargs)
            kwargs['linelist'] = linelistfilename
        # Run MOOG synth for all abundances
        if len(args) == 0:  #special case that there are *no* differences
            args = ([26, 0.], )
        nsynths = numpy.array([len(args[ii]) - 1 for ii in range(len(args))])
        nsynth = numpy.amax(nsynths)  #Take the longest abundance list
        nmoogwav= int((kwargs.get('wmax',_WMAX_DEFAULT)\
                           -kwargs.get('wmin',_WMIN_DEFAULT))\
                          /kwargs.get('dw',_DW_DEFAULT)+1)
        out = numpy.empty((nsynth, nmoogwav))
        # Check whether the number of syntheses is > 5 and run multiple
        # MOOG instances if necessary, bc MOOG only does 5 at a time
        ninstances = int(numpy.ceil(nsynth / 5.))
        for ii in range(ninstances):
            newargs = ()
            for jj in range(len(args)):
                tab = [args[jj][0]]
                if len(args[jj][5 * ii + 1:5 * (ii + 1) + 1]) > 0:
                    tab.extend(args[jj][5 * ii + 1:5 * (ii + 1) + 1])
                    newargs = newargs + (tab, )
            out[5 * ii:5 * (ii + 1)] = moogsynth(*newargs, **kwargs)[1]
            # We'll grab the wavelength grid from the continuum below
        # Now compute the continuum and multiply each c-norm spectrum with it
        mwav, cflux = moogsynth(doflux=True, **kwargs)
    except:
        raise
    finally:
        if tmpModelAtmDir:  # need to remove this temporary directory
            os.remove(modelfilename)
        moogmodelfilename = modelfilename.replace('.mod', '.org')
        if os.path.exists(moogmodelfilename):
            os.remove(moogmodelfilename)
        if run_weedout:
            os.remove(modelfilename.replace('.mod', '.lines'))
        os.rmdir(tmpDir)
    out *= numpy.tile(cflux, (nsynth, 1))
    # Now convolve with the LSF
    out = aplsf.convolve(mwav,
                         out,
                         lsf=lsf,
                         xlsf=xlsf,
                         dxlsf=dxlsf,
                         vmacro=vmacro)
    # Now continuum-normalize
    if cont.lower() == 'true':
        # Get the true continuum on the apStar wavelength grid
        apWave = apStarWavegrid()
        baseline = numpy.polynomial.Polynomial.fit(mwav, cflux, 4)
        ip = interpolate.InterpolatedUnivariateSpline(mwav,
                                                      cflux / baseline(mwav),
                                                      k=3)
        cflux = baseline(apWave) * ip(apWave)
        # Divide it out
        out /= numpy.tile(cflux, (nsynth, 1))
    elif not cont is None:
        cflux = apcont.fit(out, numpy.ones_like(out), type=cont)
        out[cflux > 0.] /= cflux[cflux > 0.]
        out[cflux <= 0.] = numpy.nan
    return out
Ejemplo n.º 2
0
def windows(*args, **kwargs):
    """
    NAME:
       windows
    PURPOSE:
       Generate model APOGEE spectra using MOOG in selected wavelength windows (but the whole APOGEE spectral range is returned): this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'moogsynth' for a direct interface to MOOG
    INPUT ARGUMENTS:
       Windows specification: Provide one of
          (1) Element string: the APOGEE windows for this element will be loaded
          (2) startindxs, endindxs= start and end indexes of the windows on the apStar wavelength grid
          (3) startlams, endlams= start and end wavelengths in \AA
       lists with abundance differences wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros):
          [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N]
          [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N]
          ...
          [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N]
    INPUT KEYWORDS:
       BASELINE: you can specify the baseline spectrum to not always re-compute it
          baseline= baseline c-normalized spectrum on MOOG wavelength grid (obtained from moogsynth)
          mwav= MOOG wavelength grid (obtained from moogsynth)
          cflux= continuum flux from MOOG
          Typically, you can obtain these three keywords by doing (kwargs are the keywords you provide to this function as well)
          >>> baseline= moogsynth(**kwargs)[1]
          >>> mwav, cflux= moogsynth(doflux=True,**kwargs)
       LSF:
          lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web
          Either:
             xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo'
             dxlsf= (None) spacing of pixel offsets
          vmacro= (6.) macroturbulence to apply
       CONTINUUM:
          cont= ('aspcap') continuum-normalization to apply:
             None: no continuum normalization
             'true': Use the true continuum
             'aspcap': Use the continuum normalization method of ASPCAP DR12
             'cannon': Normalize using continuum pixels derived from the Cannon
       SYNTHESIS:
          linelist= (None) linelist to use; if this is None, the code looks for a weed-out version of the linelist appropriate for the given model atmosphere
          run_weedout= (False) if True, run MOOG weedout on the linelist first
          wmin, wmax, dw, width= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits *for the whole spectrum* (not just the windows), step, and width of calculation (see MOOG)
       MODEL ATMOSPHERE PARAMETERS:
          Specify one of the following:
             (a) modelatm= (None) can be set to the filename of a model atmosphere or to a model-atmosphere instance (if filename, needs to end in .mod)
             (b) parameters of a KURUCZ model atmosphere:
                 (1) teff= (4500) Teff
                     logg= (2.5) logg
                     metals= (0.) metallicity
                     cm= (0.) carbon-enhancement
                     am= (0.) alpha-enhancement
                 (2) fparam= standard ASPCAP output format (
                 lib= ('kurucz_filled') model atmosphere library
                 dr= (None) use model atmospheres from this data release
          vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam)
       MISCELLANEOUS:
          dr= return the path corresponding to this data release
    OUTPUT:
       spectra (nspec,nwave)
    HISTORY:
       2015-03-18 - Written - Bovy (IAS)
    """
    # Pop some kwargs
    run_weedout = kwargs.pop('run_weedout', False)
    baseline = kwargs.pop('baseline', None)
    mwav = kwargs.pop('mwav', None)
    cflux = kwargs.pop('cflux', None)
    # Check that we have the LSF and store the relevant keywords
    lsf = kwargs.pop('lsf', 'all')
    if isinstance(lsf, str):
        xlsf, lsf = aplsf._load_precomp(dr=kwargs.get('dr', None), fiber=lsf)
        dxlsf = None
    else:
        xlsf = kwargs.pop('xlsf', None)
        dxlsf = kwargs.pop('dxlsf', None)
        if xlsf is None and dxlsf is None:
            raise ValueError(
                'xlsf= or dxlsf= input needs to be given if the LSF is given as an array'
            )
    vmacro = kwargs.pop('vmacro', 6.)
    # Parse continuum-normalization keywords
    cont = kwargs.pop('cont', 'aspcap')
    # Parse the wavelength regions
    apWave = apStarWavegrid()
    if isinstance(args[0], str):  #element string given
        si, ei = apwindow.waveregions(args[0], pad=3, asIndex=True)
        args = args[1:]
    else:
        if isinstance(args[0][0], int):  # assume index
            si, ei = args[0], args[1]
        else:  # assume wavelengths in \AA
            sl, el = args[0], args[1]
            # Convert to index
            si, ei = [], []
            for s, e in zip(sl, el):
                # Find closest index into apWave
                si.append(numpy.argmin(numpy.fabs(s - apWave)))
                ei.append(numpy.argmin(numpy.fabs(e - apWave)))
        args = args[2:]
    # Setup the model atmosphere
    modelatm = kwargs.pop('modelatm', None)
    tmpModelAtmDir = False
    # Parse fparam, if present
    fparam = kwargs.pop('fparam', None)
    if not fparam is None:
        kwargs['teff'] = fparam[0, paramIndx('TEFF')]
        kwargs['logg'] = fparam[0, paramIndx('LOGG')]
        kwargs['metals'] = fparam[0, paramIndx('METALS')]
        kwargs['am'] = fparam[0, paramIndx('ALPHA')]
        kwargs['cm'] = fparam[0, paramIndx('C')]
        kwargs['vm'] = 10.**fparam[0, paramIndx('LOG10VDOP')]
    if modelatm is None:  # Setup a model atmosphere
        modelatm = atlas9.Atlas9Atmosphere(teff=kwargs.get('teff', 4500.),
                                           logg=kwargs.get('logg', 2.5),
                                           metals=kwargs.get('metals', 0.),
                                           am=kwargs.get('am', 0.),
                                           cm=kwargs.get('cm', 0.),
                                           dr=kwargs.get('dr', None))
    if isinstance(modelatm, str) and os.path.exists(modelatm):
        modelfilename = modelatm
    elif isinstance(modelatm, str):
        raise ValueError('modelatm= input is a non-existing filename')
    else:  # model atmosphere instance
        # Need to write this instance to a file; we will run in a temp
        # subdirectory of the current directory
        tmpDir = tempfile.mkdtemp(dir=os.getcwd())
        tmpModelAtmDir = True  # need to remove this later
        modelfilename = os.path.join(tmpDir, 'modelatm.mod')
        modelatm.writeto(modelfilename)
    kwargs['modelatm'] = modelfilename
    try:
        # Check whether a MOOG version of the model atmosphere exists
        if not os.path.exists(modelfilename.replace('.mod', '.org')):
            # Convert to MOOG format
            convert_modelAtmosphere(**kwargs)
        # Run weedout on the linelist first if requested
        if run_weedout:
            linelistfilename = modelfilename.replace('.mod', '.lines')
            if not os.path.exists(linelistfilename):
                weedout(**kwargs)
            kwargs['linelist'] = linelistfilename
        # Run MOOG synth for the whole wavelength range as a baseline, also contin
        if baseline is None:
            baseline = moogsynth(**kwargs)[1]
        elif isinstance(baseline,
                        tuple):  #probably accidentally gave wav as well
            baseline = baseline[1]
        if mwav is None or cflux is None:
            mwav, cflux = moogsynth(doflux=True, **kwargs)
        # Convert the apStarWavegrid windows to moogWavegrid regions
        sm, em = [], []
        for start, end in zip(si, ei):
            sm.append(numpy.argmin(numpy.fabs(apWave[start] - mwav)))
            em.append(numpy.argmin(numpy.fabs(apWave[end] - mwav)))
        # Run MOOG synth for all abundances and all windows
        if len(args) == 0:  #special case that there are *no* differences
            args = ([26, 0.], )
        nsynths = numpy.array([len(args[ii]) - 1 for ii in range(len(args))])
        nsynth = numpy.amax(nsynths)  #Take the longest abundance list
        out = numpy.tile(baseline, (nsynth, 1))
        # Run all windows
        for start, end in zip(sm, em):
            kwargs['wmin'] = mwav[start]
            kwargs['wmax'] = mwav[end]
            # Check whether the number of syntheses is > 5 and run multiple
            # MOOG instances if necessary, bc MOOG only does 5 at a time
            ninstances = int(numpy.ceil(nsynth / 5.))
            for ii in range(ninstances):
                newargs = ()
                for jj in range(len(args)):
                    tab = [args[jj][0]]
                    if len(args[jj][5 * ii + 1:5 * (ii + 1) + 1]) > 0:
                        tab.extend(args[jj][5 * ii + 1:5 * (ii + 1) + 1])
                        newargs = newargs + (tab, )
                out[5 * ii:5 * (ii + 1),
                    start:end + 1] = moogsynth(*newargs, **kwargs)[1]
    except:
        raise
    finally:
        if tmpModelAtmDir:  # need to remove this temporary directory
            os.remove(modelfilename)
        moogmodelfilename = modelfilename.replace('.mod', '.org')
        if os.path.exists(moogmodelfilename):
            os.remove(moogmodelfilename)
        if run_weedout:
            os.remove(modelfilename.replace('.mod', '.lines'))
        os.rmdir(tmpDir)
    # Now multiply each continuum-normalized spectrum with the continuum
    out *= numpy.tile(cflux, (nsynth, 1))
    # Now convolve with the LSF
    out = aplsf.convolve(mwav,
                         out,
                         lsf=lsf,
                         xlsf=xlsf,
                         dxlsf=dxlsf,
                         vmacro=vmacro)
    # Now continuum-normalize
    if cont.lower() == 'true':
        # Get the true continuum on the apStar wavelength grid
        apWave = apStarWavegrid()
        baseline = numpy.polynomial.Polynomial.fit(mwav, cflux, 4)
        ip = interpolate.InterpolatedUnivariateSpline(mwav,
                                                      cflux / baseline(mwav),
                                                      k=3)
        cflux = baseline(apWave) * ip(apWave)
        # Divide it out
        out /= numpy.tile(cflux, (nsynth, 1))
    elif not cont is None:
        cflux = apcont.fit(out, numpy.ones_like(out), type=cont)
        out[cflux > 0.] /= cflux[cflux > 0.]
        out[cflux <= 0.] = numpy.nan
    return out
Ejemplo n.º 3
0
def test_windows(options):
    elems = [
        'C', 'N', 'O', 'Na', 'Mg', 'Al', 'Si', 'S', 'K', 'Ca', 'Ti', 'V', 'Mn',
        'Fe', 'Ni', 'Ce', 'Co', 'Cr', 'Cu', 'Ge', 'Nd', 'P', 'Rb', 'Y'
    ]
    if options.savefilename is None or \
            not os.path.exists(options.savefilename):
        # Set default linelist for Turbospectrum or MOOG
        if options.linelist is None and options.moog:
            linelist = 'moog.201312161124.vac'
        elif options.linelist is None:
            linelist = 'turbospec.201312161124'
        else:
            linelist = options.linelist
        # set up a model atmosphere for the requested atmospheric parameters
        if options.arcturus:
            options.teff = 4286.
            options.logg = 1.66
            options.metals = -0.52
            options.am = 0.4
            options.cm = 0.09
            options.vm = 1.7
        atm = atlas9.Atlas9Atmosphere(teff=options.teff,
                                      logg=options.logg,
                                      metals=options.metals,
                                      am=options.am,
                                      cm=options.cm)
        # create baseline
        if options.moog:
            baseline= \
                apogee.modelspec.moog.synth(modelatm=atm,
                                            linelist=linelist,
                                            lsf='all',cont='aspcap',
                                            vmacro=6.,isotopes='arcturus',
                                            vmicro=options.vm)
        else:
            baseline= \
                apogee.modelspec.turbospec.synth(modelatm=atm,
                                                 linelist=linelist,
                                                 lsf='all',cont='aspcap',
                                                 vmacro=6.,isotopes='arcturus',
                                                 vmicro=options.vm)
        # Loop through elements
        elem_synspec = {}
        # Run through once to simulate all differences
        for elem in elems:
            # First check that this element has windows
            elemPath = apwindow.path(elem, dr=options.dr)
            if not os.path.exists(elemPath): continue
            # Simulate deltaAbu up and down
            print "Working on %s" % (elem.capitalize())
            abu = [atomic_number(elem), -options.deltaAbu, options.deltaAbu]
            if options.moog:
                synspec= \
                    apogee.modelspec.moog.synth(abu,
                                                modelatm=atm,
                                                linelist=linelist,
                                                lsf='all',cont='aspcap',
                                                vmacro=6.,
                                                isotopes='arcturus',
                                                vmicro=options.vm)
            else:
                synspec= \
                    apogee.modelspec.turbospec.synth(abu,
                                                     modelatm=atm,
                                                     linelist=linelist,
                                                     lsf='all',cont='aspcap',
                                                     vmacro=6.,
                                                     isotopes='arcturus',
                                                     vmicro=options.vm)
            elem_synspec[elem] = synspec
        if not options.savefilename is None:
            save_pickles(options.savefilename, baseline, elem_synspec)
    else:
        with open(options.savefilename, 'rb') as savefile:
            baseline = pickle.load(savefile)
            elem_synspec = pickle.load(savefile)
    # Now run through the different elements again and plot windows for each
    # with elements that vary significantly
    colors = sns.color_palette("colorblind")
    plotelems = [
        elem if not elem in ['C', 'N', 'O', 'Fe'] else '%s1' % elem
        for elem in elems
    ]
    plotelems.extend(['C2', 'N2', 'O2', 'Fe2'])
    for pelem in plotelems:
        if '1' in pelem or '2' in pelem: elem = pelem[:-1]
        else: elem = pelem
        if not elem in elem_synspec: continue
        # Figure out which elements have significant variations in these
        # windows and always plot the element that should vary
        elemIndx = apwindow.tophat(elem, dr=options.dr)
        elemWeights = apwindow.read(elem, dr=options.dr)
        elemWeights /= numpy.nansum(elemWeights)
        # Start with the element in question
        splot.windows(1. + options.amplify *
                      (elem_synspec[elem][0] - baseline[0]),
                      pelem,
                      color=colors[0],
                      yrange=[0., 1.4],
                      plot_weights=True,
                      zorder=len(elems))
        splot.windows(1. + options.amplify *
                      (elem_synspec[elem][1] - baseline[0]),
                      pelem,
                      color=colors[0],
                      overplot=True,
                      zorder=len(elems))
        elem_shown = [elem]
        # Run through the rest to figure out the order
        elemVar = numpy.zeros(len(elems))
        for ii, altElem in enumerate(elems):
            if altElem == elem: continue
            if not altElem in elem_synspec: continue
            elemVar[ii] = 0.5 * numpy.nansum(
                (elem_synspec[altElem][0] - baseline[0])**2. * elemWeights)
            elemVar[ii] += 0.5 * numpy.nansum(
                (elem_synspec[altElem][1] - baseline[0])**2. * elemWeights)
        jj = 0
        sortindx = numpy.argsort(elemVar)[::-1]
        for altElem in numpy.array(elems)[sortindx]:
            if altElem == elem: continue
            if not altElem in elem_synspec: continue
            if numpy.fabs(\
                numpy.nanmax([(elem_synspec[altElem][0]-baseline[0])[elemIndx],
                            (elem_synspec[altElem][1]-baseline[0])[elemIndx]]))\
                            > options.varthreshold:
                jj += 1
                if jj >= len(colors): jj = len(colors) - 1
                elem_shown.append(altElem)
                splot.windows(1. + options.amplify *
                              (elem_synspec[altElem][0] - baseline[0]),
                              pelem,
                              color=colors[jj],
                              overplot=True,
                              zorder=len(elems) - jj)
                splot.windows(1. + options.amplify *
                              (elem_synspec[altElem][1] - baseline[0]),
                              pelem,
                              color=colors[jj],
                              overplot=True,
                              zorder=len(elems) - jj)
        t = pyplot.gca().transData
        fig = pyplot.gcf()
        for s, c in zip(elem_shown, colors[:jj + 1]):
            xc = 0.05
            if elem == 'K' or elem == 'Ce' or elem == 'Ge' or elem == 'Nd' \
                    or elem == 'Rb':
                xc = apwindow.waveregions(elem, dr=options.dr,
                                          pad=3)[0][0] - 15000. + 1.
            text = pyplot.text(xc,
                               1.2,
                               " " + (r"$\mathrm{%s}$" % s) + " ",
                               color=c,
                               transform=t,
                               size=16.,
                               backgroundcolor='w')
            text.draw(fig.canvas.get_renderer())
            ex = text.get_window_extent()
            t = transforms.offset_copy(text._transform,
                                       x=1.5 * ex.width,
                                       units='dots')
        # Save
        bovy_plot.bovy_end_print(options.plotfilename.replace('ELEM', pelem))
    return None
Ejemplo n.º 4
0
def synth(*args,**kwargs):
    """
    NAME:
       synth
    PURPOSE:
       Generate model APOGEE spectra using Turbospectrum: this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'turbosynth' for a direct interface to Turbospectrum
    INPUT ARGUMENTS:
       lists with abundances differences wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros):
          [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N]
          [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N]
          ...
          [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N]
    INPUT KEYWORDS:
       LSF:
          lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web
          Either:
             xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo'
             dxlsf= (None) spacing of pixel offsets
          vmacro= (6.) macroturbulence to apply
       CONTINUUM:
          cont= ('aspcap') continuum-normalization to apply:
             None: no continuum normalization
             'true': Use the true continuum
             'aspcap': Use the continuum normalization method of ASPCAP DR12
             'cannon': Normalize using continuum pixels derived from the Cannon
       SYNTHESIS:
          air= (True) if True, perform the synthesis in air wavelengths (output is still in vacuum); set to False at your own risk, as Turbospectrum expects the linelist in air wavelengths!)
          Hlinelist= (None) Hydrogen linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist; if None, then we first search for the Hlinedata.vac in the APOGEE linelist directory (if air=False) or we use the internal Turbospectrum Hlinelist (if air=True)
          linelist= (None) molecular and atomic linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist, or lists of such files; if a single filename is given, the code will first search for files with extensions '.atoms', '.molec' or that start with 'turboatoms.' and 'turbomolec.'
          wmin, wmax, dw= (15000.000, 17000.000, 0.10000000) spectral synthesis limits and step
          costheta= (1.) cosine of the viewing angle
          lib= ('kurucz_filled') spectral library
       MODEL ATMOSPHERE PARAMETERS:
          Specify one of the following:
             (a) modelatm= (None) model-atmosphere instance
             (b) parameters of a KURUCZ model atmosphere:
                 (1) teff= (4500) Teff
                     logg= (2.5) logg
                     metals= (0.) metallicity
                     cm= (0.) carbon-enhancement
                     am= (0.) alpha-enhancement
                 (2) fparam= standard ASPCAP output format
                 lib= ('kurucz_filled') model atmosphere library
          vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam)
       MISCELLANEOUS:
          dr= return the path corresponding to this data release
    OUTPUT:
       spectra (nspec,nwave)
    HISTORY:
       2015-04-16 - Written - Bovy (IAS)
    """
    # Check that we have the LSF and store the relevant keywords
    lsf= kwargs.pop('lsf','all')
    if isinstance(lsf,str):
        xlsf, lsf= aplsf._load_precomp(dr=kwargs.get('dr',None),fiber=lsf)
        dxlsf= None
    else:
        xlsf= kwargs.pop('xlsf',None)
        dxlsf= kwargs.pop('dxlsf',None)
        if xlsf is None and dxlsf is None: raise ValueError('xlsf= or dxlsf= input needs to be given if the LSF is given as an array')
    vmacro= kwargs.pop('vmacro',6.)
    # Parse continuum-normalization keywords
    cont= kwargs.pop('cont','aspcap')
    # Setup the model atmosphere
    modelatm= kwargs.pop('modelatm',None)
    # Parse fparam, if present
    fparam= kwargs.pop('fparam',None)
    if not fparam is None:
        kwargs['teff']= fparam[paramIndx('TEFF')]
        kwargs['logg']= fparam[paramIndx('LOGG')]
        kwargs['metals']= fparam[paramIndx('METALS')]
        kwargs['am']= fparam[paramIndx('ALPHA')]
        kwargs['cm']= fparam[paramIndx('C')]
        kwargs['vmicro']= 10.**fparam[paramIndx('LOG10VDOP')]        
    # Need to pass a model atmosphere instance to turbosynth (needs to be made
    # more efficient, because now turbosynth always write the atmosphere
    if modelatm is None: # Setup a model atmosphere
        modelatm= atlas9.Atlas9Atmosphere(teff=kwargs.get('teff',4500.),
                                          logg=kwargs.get('logg',2.5),
                                          metals=kwargs.get('metals',0.),
                                          am=kwargs.get('am',0.),
                                          cm=kwargs.get('cm',0.),
                                          dr=kwargs.get('dr',None))
    if isinstance(modelatm,str) and os.path.exists(modelatm):
        raise ValueError('modelatm= input is an existing filename, but you need to give an Atmosphere object instead')
    elif isinstance(modelatm,str):
        raise ValueError('modelatm= input needs to be an Atmosphere instance')
    # Check temperature
    if modelatm._teff > 7000.:
        warnings.warn('Turbospectrum does not include all necessary physics to model stars hotter than about 7000 K; proceed with caution',RuntimeWarning)
    kwargs['modelatm']= modelatm
    try:
        # Run turbosynth for all abundances
        if len(args) == 0: #special case that there are *no* differences
            args= ([26,0.],)
        nsynths= numpy.array([len(args[ii])-1 for ii in range(len(args))])
        nsynth= numpy.amax(nsynths) #Take the longest abundance list
        nturbowav= int((kwargs.get('wmax',_WMAX_DEFAULT)\
                            -kwargs.get('wmin',_WMIN_DEFAULT))\
                           /kwargs.get('dw',_DW_DEFAULT)+1)
        out= numpy.empty((nsynth,nturbowav))
        for ii in range(nsynth):
            newargs= ()
            for jj in range(len(args)):
                tab= [args[jj][0]]
                if len(args[jj]) > ii+1:
                    tab.append(args[jj][ii+1])
                    newargs= newargs+(tab,)
            tmpOut= turbosynth(*newargs,**kwargs)
            out[ii]= tmpOut[2] # incl. continuum
        # wavelength grid from final one
        mwav= tmpOut[0]
    except: raise
    # If the synthesis was done in air, convert wavelength array
    if kwargs.get('air',True):
        mwav= numpy.array([air2vac(w) for w in list(mwav)])
    # Now convolve with the LSF
    out= aplsf.convolve(mwav,out,
                        lsf=lsf,xlsf=xlsf,dxlsf=dxlsf,vmacro=vmacro)
    # Now continuum-normalize
    if cont.lower() == 'true':
        # Get the true continuum on the apStar wavelength grid
        apWave= apStarWavegrid()
        baseline= numpy.polynomial.Polynomial.fit(mwav,tmpOut[2]/tmpOut[1],4)
        ip= interpolate.InterpolatedUnivariateSpline(mwav,
                                                     tmpOut[2]/tmpOut[1]\
                                                         /baseline(mwav),
                                                     k=3)
        cflux= baseline(apWave)*ip(apWave)
        # Divide it out
        out/= numpy.tile(cflux,(nsynth,1))
    elif not cont is None:
        cflux= apcont.fit(out,numpy.ones_like(out),type=cont)
        out[cflux > 0.]/= cflux[cflux > 0.]
        out[cflux <= 0.]= numpy.nan
    return out
Ejemplo n.º 5
0
def windows(*args,**kwargs):
    """
    NAME:
       windows
    PURPOSE:
       Generate model APOGEE spectra using Turbospectrum in selected wavelength windows (but the whole APOGEE spectral range is returned): this is a general routine that generates the non-continuum-normalized spectrum, convolves with the LSF and macrotubulence, and optionally continuum normalizes the output; use 'turbosynth' for a direct interface to Turbospectrum
    INPUT ARGUMENTS:
       Windows specification: Provide one of
          (1) Element string: the APOGEE windows for this element will be loaded
          (2) startindxs, endindxs= start and end indexes of the windows on the apStar wavelength grid
          (3) startlams, endlams= start and end wavelengths in \AA
       lists with abundance differences wrt the atmosphere (they don't all have to have the same length, missing ones are filled in with zeros):
          [Atomic number1,diff1_1,diff1_2,diff1_3,...,diff1_N]
          [Atomic number2,diff2_1,diff2_2,diff2_3,...,diff2_N]
          ...
          [Atomic numberM,diffM_1,diffM_2,diffM_3,...,diffM_N]
    INPUT KEYWORDS:
       BASELINE: you can specify the baseline spectrum and the continuous opacity to not always re-compute it
          baseline= baseline c-normalized spectrum on Turbospectrum wavelength grid (obtained from turbosynth)
          mwav= Turbospectrum wavelength grid (obtained from turbosynth)
          cflux= continuum flux from Turbospectrum
          modelopac= (None) 
                     (a) if set to an existing filename: assume babsma_lu has already been run and use this continuous opacity in bsyn_lu
                     (b) if set to a non-existing filename: store the continuous opacity in this file
          Typically, you can obtain these three keywords by doing (kwargs are the keywords you provide to this function as well, and includes modelopac='SOME FILENAME')
          >>> baseline= turbosynth(**kwargs)
          >>> mwav= baseline[0]
          >>> cflux= baseline[2]/baseline[1]
          >>> baseline= baseline[1]
       LSF:
          lsf= ('all') LSF to convolve with; output of apogee.spec.lsf.eval; sparsify for efficiency; if 'all' or 'combo' a pre-computed version will be downloaded from the web
          Either:
             xlsf= (None) pixel offset grid on which the LSF is computed (see apogee.spec.lsf.eval); unnecessary if lsf=='all' or 'combo'
             dxlsf= (None) spacing of pixel offsets
          vmacro= (6.) macroturbulence to apply
       CONTINUUM:
          cont= ('aspcap') continuum-normalization to apply:
             None: no continuum normalization
             'true': Use the true continuum
             'aspcap': Use the continuum normalization method of ASPCAP DR12
             'cannon': Normalize using continuum pixels derived from the Cannon
       SYNTHESIS:
          air= (True) if True, perform the synthesis in air wavelengths (output is still in vacuum); set to False at your own risk, as Turbospectrum expects the linelist in air wavelengths!)
          Hlinelist= (None) Hydrogen linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist; if None, then we first search for the Hlinedata.vac in the APOGEE linelist directory (if air=False) or we use the internal Turbospectrum Hlinelist (if air=True)
          linelist= (None) molecular and atomic linelists to use; can be set to the path of a linelist file or to the name of an APOGEE linelist, or lists of such files; if a single filename is given, the code will first search for files with extensions '.atoms', '.molec' or that start with 'turboatoms.' and 'turbomolec.'
          wmin, wmax, dw= (15000.000, 17000.000, 0.10000000, 7.0000000) spectral synthesis limits, step, and width of calculation (see MOOG)
          costheta= (1.) cosine of the viewing angle
       MODEL ATMOSPHERE PARAMETERS:
          Specify one of the following:
             (a) modelatm= (None) model-atmosphere instance
             (b) parameters of a KURUCZ model atmosphere:
                 (1) teff= (4500) Teff
                     logg= (2.5) logg
                     metals= (0.) metallicity
                     cm= (0.) carbon-enhancement
                     am= (0.) alpha-enhancement
                 (2) fparam= standard ASPCAP output format
                 lib= ('kurucz_filled') model atmosphere library
          vmicro= (2.) microturbulence (only used if the MOOG-formatted atmosphere is not found) (can also be part of fparam)
       MISCELLANEOUS:
          dr= return the path corresponding to this data release
          raw= (False) if True, return the raw turbosynth output
    OUTPUT:
       spectra (nspec,nwave)
       (wavelengths,cont-norm. spectrum, spectrum (nwave)) if raw == True
    HISTORY:
       2015-04-17 - Written - Bovy (IAS)
    """
    # Pop some kwargs
    baseline= kwargs.pop('baseline',None)
    mwav= kwargs.pop('mwav',None)
    cflux= kwargs.pop('cflux',None)
    raw= kwargs.pop('raw',False)
    # Check that we have the LSF and store the relevant keywords
    lsf= kwargs.pop('lsf','all')
    if isinstance(lsf,str):
        xlsf, lsf= aplsf._load_precomp(dr=kwargs.get('dr',None),fiber=lsf)
        dxlsf= None
    else:
        xlsf= kwargs.pop('xlsf',None)
        dxlsf= kwargs.pop('dxlsf',None)
        if xlsf is None and dxlsf is None: raise ValueError('xlsf= or dxlsf= input needs to be given if the LSF is given as an array')
    vmacro= kwargs.pop('vmacro',6.)
    # Parse continuum-normalization keywords
    cont= kwargs.pop('cont','aspcap')
    # Parse the wavelength regions
    apWave= apStarWavegrid()
    if isinstance(args[0],str): #element string given
        si,ei= apwindow.waveregions(args[0],pad=3,asIndex=True)
        args= args[1:]
    else:
        if isinstance(args[0][0],int): # assume index
            si,ei= args[0], args[1]
        else: # assume wavelengths in \AA
            sl,el= args[0], args[1]
            # Convert to index
            si, ei= [], []
            for s,e in zip(sl,el):
                # Find closest index into apWave
                si.append(numpy.argmin(numpy.fabs(s-apWave)))
                ei.append(numpy.argmin(numpy.fabs(e-apWave)))
        args= args[2:]
    # Setup the model atmosphere
    modelatm= kwargs.pop('modelatm',None)
    # Parse fparam, if present
    fparam= kwargs.pop('fparam',None)
    if not fparam is None:
        kwargs['teff']= fparam[0,paramIndx('TEFF')]
        kwargs['logg']= fparam[0,paramIndx('LOGG')]
        kwargs['metals']= fparam[0,paramIndx('METALS')]
        kwargs['am']= fparam[0,paramIndx('ALPHA')]
        kwargs['cm']= fparam[0,paramIndx('C')]
        kwargs['vmicro']= 10.**fparam[0,paramIndx('LOG10VDOP')]        
    # Need to pass a model atmosphere instance to turbosynth (needs to be made
    # more efficient, because now turbosynth always write the atmosphere
    if modelatm is None: # Setup a model atmosphere
        modelatm= atlas9.Atlas9Atmosphere(teff=kwargs.get('teff',4500.),
                                          logg=kwargs.get('logg',2.5),
                                          metals=kwargs.get('metals',0.),
                                          am=kwargs.get('am',0.),
                                          cm=kwargs.get('cm',0.),
                                          dr=kwargs.get('dr',None))
    if isinstance(modelatm,str) and os.path.exists(modelatm):
        raise ValueError('modelatm= input is an existing filename, but you need to give an Atmosphere object instead')
    elif isinstance(modelatm,str):
        raise ValueError('modelatm= input needs to be an Atmosphere instance')
    # Check temperature
    if modelatm._teff > 7000.:
        warnings.warn('Turbospectrum does not include all necessary physics to model stars hotter than about 7000 K; proceed with caution',RuntimeWarning)
    kwargs['modelatm']= modelatm
    try:
        rmModelopac= False
        if not 'modelopac' in kwargs:
            rmModelopac= True
            kwargs['modelopac']= tempfile.mktemp('mopac')
            # Make sure opacity is first calculated over the full wav. range
            kwargs['babsma_wmin']= 15000.
            kwargs['babsma_wmax']= 17000.
        elif 'modelopac' in kwargs and not isinstance(kwargs['modelopac'],str):
            raise ValueError('modelopac needs to be set to a filename')
        # Run synth for the whole wavelength range as a baseline
        if baseline is None or mwav is None or cflux is None:
            baseline= turbosynth(**kwargs)
            mwav= baseline[0]
            cflux= baseline[2]/baseline[1]
            baseline= baseline[1]
        elif isinstance(baseline,tuple): #probably accidentally gave the entire output of turbosynth
            mwav= baseline[0]
            cflux= baseline[2]/baseline[1]
            baseline= baseline[1]
        # Convert the apStarWavegrid windows to turboWavegrid regions
        sm,em= [], []
        for start,end in zip(si,ei):
            if kwargs.get('air',True):
                sm.append(numpy.argmin(numpy.fabs(vac2air(apWave[start])-mwav)))
                em.append(numpy.argmin(numpy.fabs(vac2air(apWave[end])-mwav)))
            else:
                sm.append(numpy.argmin(numpy.fabs(apWave[start]-mwav)))
                em.append(numpy.argmin(numpy.fabs(apWave[end]-mwav)))
        # Run Turbospectrum synth for all abundances and all windows
        if len(args) == 0: #special case that there are *no* differences
            args= ([26,0.],)
        nsynths= numpy.array([len(args[ii])-1 for ii in range(len(args))])
        nsynth= numpy.amax(nsynths) #Take the longest abundance list
        out= numpy.tile(baseline,(nsynth,1))
        # Run all windows
        for start, end in zip(sm,em):
            kwargs['wmin']= mwav[start]
            kwargs['wmax']= mwav[end]+0.001
            for ii in range(nsynth):
                newargs= ()
                for jj in range(len(args)):
                    tab= [args[jj][0]]
                    if len(args[jj]) > ii+1:
                        tab.append(args[jj][ii+1])
                        newargs= newargs+(tab,)
                tmpOut= turbosynth(*newargs,**kwargs)
                if numpy.isnan(tmpOut[1][-1]): 
                    # NaN returned for reasons that I don't understand
                    out[ii,start:end]= tmpOut[1][:-1]
                else:
                    out[ii,start:end+1]= tmpOut[1]
    except: raise
    finally:
        if rmModelopac and os.path.exists(kwargs['modelopac']):
            os.remove(kwargs['modelopac'])
            kwargs.pop('modelopac')
    # Now multiply each continuum-normalized spectrum with the continuum
    out*= numpy.tile(cflux,(nsynth,1))
    if raw: return (mwav,out/numpy.tile(cflux,(nsynth,1)),out)
    # If the synthesis was done in air, convert wavelength array
    if kwargs.get('air',True):
        mwav= numpy.array([air2vac(w) for w in list(mwav)])
    # Now convolve with the LSF
    out= aplsf.convolve(mwav,out,
                        lsf=lsf,xlsf=xlsf,dxlsf=dxlsf,vmacro=vmacro)
    # Now continuum-normalize
    if cont.lower() == 'true':
        # Get the true continuum on the apStar wavelength grid
        apWave= apStarWavegrid()
        baseline= numpy.polynomial.Polynomial.fit(mwav,cflux,4)
        ip= interpolate.InterpolatedUnivariateSpline(mwav,
                                                     cflux/baseline(mwav),
                                                     k=3)
        cflux= baseline(apWave)*ip(apWave)
        # Divide it out
        out/= numpy.tile(cflux,(nsynth,1))
    elif not cont is None:
        cflux= apcont.fit(out,numpy.ones_like(out),type=cont)
        out[cflux > 0.]/= cflux[cflux > 0.]
        out[cflux <= 0.]= numpy.nan
    return out
Ejemplo n.º 6
0
# downloads all files within parameter range (all combinations), use python2.7
from apogee.modelatm import atlas9
for t in range(3500, 6250, 250):
    for x in range(0, 55, 5):
        g = x / 10.0
        for y in range(-2, 5, 1):
            m = y / 10.0
            atm = atlas9.Atlas9Atmosphere(teff=t,
                                          logg=g,
                                          metals=m,
                                          am=0.25,
                                          cm=0.25)