Ejemplo n.º 1
0
    def update_train_task_by_id(train_job_id, train_task_id, is_check_train_terms, model_type, args):
        """
        1. 根据字段状态更新训练状态和结果
        2. 直接设置训练状态和结果
        3. 模型上线状态更新(分类和抽取还不一样)
        """
        train_job = TrainJobModel().get_by_id(train_job_id)
        train_task = TrainTaskModel().get_by_id(train_task_id)

        if is_check_train_terms: # 是否需要检查train_term的状态
            _, training_terms = TrainTermTaskModel().get_by_filter(limit=99999, train_task_id=train_task_id,
                                                                   train_term_status=int(StatusEnum.training))
            _, failed_terms = TrainTermTaskModel().get_by_filter(limit=99999, train_task_id=train_task_id,
                                                                 train_term_status=int(StatusEnum.fail))
            if not training_terms:
                # 没有处于训练中
                if not failed_terms:
                    # 没有处于失败的
                    args["train_status"] = int(StatusEnum.success)
                else:
                    args["train_status"] = int(StatusEnum.fail)
            else:
                args["train_status"] = int(StatusEnum.training)
        else:
            # no limit to set model_train_state=success/failed
            if args["train_status"] == int(StatusEnum.online):
                # validation
                if train_task.train_status == StatusEnum.online:
                    abort(400, message="该模型已经上线")
                if train_task.train_status != StatusEnum.success:
                    abort(400, message="只能上线训练成功的模型")

                # send model train http request
                service_url = _get("CLASSIFY_MODEL_ONLINE") if model_type == "classify" else _get("EXTRACT_MODEL_ONLINE")
                resp = requests.post(f"{service_url}?model_version={train_task.model_version}")
                if resp.status_code < 200 or resp.status_code >= 300:
                    abort(500, message=f"上线服务 <{service_url}> 出现错误: {resp.text}")

                # find all online model under this doc_type_id
                online_models = TrainTaskModel().get_by_doc_type_id(doc_type_id=train_job.doc_type_id, train_status=int(StatusEnum.online))

                # unload online models
                TrainTaskModel().bulk_update([train.train_task_id for train in online_models], train_status=int(StatusEnum.success))

        # update train task
        train_task = TrainTaskModel().update(train_task_id, **args)
        session.commit()
        return train_task
Ejemplo n.º 2
0
    def create_evaluate_task_by_train_job_id(train_job_id, evaluate_task_name, evaluate_task_desc, mark_job_ids, doc_term_ids, doc_relation_ids, use_rule=0):
        """
        如果后面要加重新训练的逻辑,这部分要改,不能根据train_job_id去创建评估任务,而是根据train_task_id,
        目前先保留,因为目前train_job和train_task是一一对应,不会有影响
        """
        # get correspondent train_job, doc_type, train_task, nlp_task by train_job_id
        train_job = TrainJobModel().get_by_id(train_job_id)
        doc_type = DocTypeModel().get_by_id(train_job.doc_type_id)
        doc_term_list = DocTermModel().get_by_filter(limit=99999, doc_type_id=doc_type.doc_type_id)
        doc_type.doc_term_list = doc_term_list

        nlp_task = NlpTaskEnum(doc_type.nlp_task_id)
        _, train_task_list = TrainTaskModel().get_by_filter(train_job_id=train_job_id)
        train_task = train_task_list[0]

        # create evaluate_task
        evaluate_task = EvaluateTaskModel().create(evaluate_task_name=evaluate_task_name,
                                                   evaluate_task_desc=evaluate_task_desc,
                                                   train_task_id=train_task.train_task_id,
                                                   evaluate_task_status=int(StatusEnum.processing))
        # bulk create evaluate m2m mark
        evaluate_m2m_mark_list = [{"evaluate_task_id": evaluate_task.evaluate_task_id, "mark_job_id": _id} for _id in mark_job_ids]
        EvaluateM2mMarkModel().bulk_create(evaluate_m2m_mark_list)

        # push to evaluate redis queue
        doc_term_ids = [str(t.doc_term_id) for t in RelationM2mTermModel().get_by_filter(limit=99999, doc_relation_ids=[int(rl) for rl in doc_relation_ids])]
        push_evaluate_task_to_redis(nlp_task, evaluate_task, train_task, doc_type, mark_job_ids, doc_term_ids, doc_relation_ids, use_rule)
        session.commit()
        return evaluate_task
Ejemplo n.º 3
0
    def update_train_task_by_model_version(model_version, is_check_train_terms, args):
        train_task = TrainTaskModel().get_by_filter(model_version=model_version)[1][0]

        if is_check_train_terms:
            _, training_terms = TrainTermTaskModel().get_by_filter(limit=99999, train_task_id=train_task.train_task_id,
                                                                   train_term_status=int(StatusEnum.training))
            _, failed_terms = TrainTermTaskModel().get_by_filter(limit=99999, train_task_id=train_task.train_task_id,
                                                                 train_term_status=int(StatusEnum.fail))
            if not training_terms:
                # 没有处于训练中
                if not failed_terms:
                    # 没有处于失败的
                    args["train_status"] = int(StatusEnum.success)
                else:
                    args["train_status"] = int(StatusEnum.fail)
            else:
                args["train_status"] = int(StatusEnum.training)
        train_task = TrainTaskModel().update(train_task.train_task_id, **args)
        session.commit()
        return train_task
Ejemplo n.º 4
0
 def create_train_task():
     from app.model import TrainTaskModel
     if TrainTaskModel().is_empty_table():
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train1",
                                 train_status=int(StatusEnum.online),
                                 train_job_id=1)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train2",
                                 train_status=int(StatusEnum.success),
                                 train_job_id=2)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train3",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=3)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train4",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=4)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train5",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=5)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train6",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=6)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train7",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=7)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train8",
                                 train_status=int(StatusEnum.online),
                                 train_job_id=8)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train9",
                                 train_status=int(StatusEnum.success),
                                 train_job_id=9)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train10",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=10)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train11",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=11)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train12",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=12)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train13",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=13)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train14",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=14)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train15",
                                 train_status=int(StatusEnum.online),
                                 train_job_id=15)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train16",
                                 train_status=int(StatusEnum.success),
                                 train_job_id=16)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train17",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=17)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train18",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=18)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train19",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=19)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train20",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=20)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train21",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=21)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train22",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=22)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train23",
                                 train_status=int(StatusEnum.online),
                                 train_job_id=23)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train24",
                                 train_status=int(StatusEnum.success),
                                 train_job_id=24)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train25",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=25)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train26",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=26)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train27",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=27)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train28",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=28)
         TrainTaskModel().create(app_id=1,
                                 created_by=1,
                                 train_model_name="train29",
                                 train_status=int(StatusEnum.training),
                                 train_job_id=29)
     session.commit()
Ejemplo n.º 5
0
 def get_evaluate_task_by_id(evaluate_task_id):
     evaluate_task = EvaluateTaskModel().get_by_id(evaluate_task_id)
     evaluate_task.train_job_id = TrainTaskModel().get_by_id(evaluate_task.train_task_id).train_job_id
     return evaluate_task
Ejemplo n.º 6
0
 def get_train_task_by_id(train_task_id) -> TrainTask:
     train_task = TrainTaskModel().get_by_id(train_task_id)
     train_task.mark_job_ids = [m2m.mark_job_id for m2m in TrainM2mMarkbModel().get_by_filter(limit=99999, train_job_id=train_task.train_job_id)]
     return train_task
Ejemplo n.º 7
0
 def get_train_task_list_by_train_job_id(train_job_id, order_by, order_by_desc, offset, limit) -> (int, [TrainTask]):
     count, result = TrainTaskModel().get_by_filter(order_by=order_by, order_by_desc=order_by_desc, offset=offset, limit=limit, train_job_id=train_job_id)
     return count, result
Ejemplo n.º 8
0
 def delete_train_task_by_id(train_task_id):
     TrainTaskModel().delete(train_task_id)
     session.commit()