Ejemplo n.º 1
0
def test_get_category(mock_request_get, mock_datetime, category, datetime_str,
                      latest_value, country_name, country_code, province,
                      latest_country_value, coordinate_lat, coordinate_long):
    #mock app.services.location.jhu.datetime.utcnow().isoformat()
    mock_datetime.utcnow.return_value.isoformat.return_value = datetime_str
    output = jhu.get_category(category)

    #simple schema validation
    assert output[
        "source"] == "https://github.com/ExpDev07/coronavirus-tracker-api"

    assert isinstance(output["latest"], int)
    assert output["latest"] == latest_value  #based on example data

    #check for valid datestring
    assert date.is_date(output["last_updated"]) is True
    #ensure date formating
    assert output["last_updated"] == datetime_str + "Z"  #based on example data

    #validate location schema
    location_entry = output["locations"][0]

    assert isinstance(location_entry["country"], str)
    assert location_entry["country"] == country_name  #based on example data

    assert isinstance(location_entry["country_code"], str)
    assert len(location_entry["country_code"]) == 2
    assert location_entry[
        "country_code"] == country_code  #based on example data

    assert isinstance(location_entry["province"], str)
    assert location_entry["province"] == province  #based on example data

    assert isinstance(location_entry["latest"], int)
    assert location_entry[
        "latest"] == latest_country_value  #based on example data

    #validate coordinates in location
    coordinates = location_entry["coordinates"]

    assert isinstance(coordinates["lat"], str)
    assert coordinates["lat"] == coordinate_lat

    assert isinstance(coordinates["long"], str)
    assert coordinates["long"] == coordinate_long

    #validate history in location
    history = location_entry["history"]
    assert date.is_date(list(history.keys())[0]) is True
    assert isinstance(list(history.values())[0], int)
Ejemplo n.º 2
0
def get_data_country_by_category_by_province(category, country_code):
    """
    Get all the data of a country by category. There is three category (confirmed | death | recovered)
    """
    data = request.get_data_time_series(category)
    # The normalized locations.
    locations = []

    for item in data:
        if country_code.upper() == countrycodes.country_code(
                item['Country/Region']):
            # Filter out all the dates.
            history = dict(
                filter(lambda element: date_util.is_date(element[0]),
                       item.items()))
            # Sorted date history
            history = sorted_history_date(formated_date(history))
            # Country for this location.
            country = item['Country/Region']
            # Latest data insert value.
            latest = list(history.values())[-1]
            # Normalize the item and append to locations.
            locations.append({
                # General info.
                'country': country,
                'country_code': countrycodes.country_code(country),
                'province': item['Province/State'],
                # History.
                'history': history,
                # Latest statistic.
                'total': int(latest or 0),
            })

    # Check if the country without province exist
    data_country_all_province = []

    # By country and province
    for country in locations:
        if country['country_code'] == country_code.upper(
        ) and country['province'] == '':
            return {
                'data': country['history'],
                'country': country['country'],
                'country_code': country['country_code'],
                'province': country['province'],
                'last_updated': ''
            }
    # Otherwise regrouped all provinces of the country
    for country in locations:
        if country['country_code'] == country_code.upper():
            data_country_all_province.append(country['history'])

    return {
        'data': data_country_by_province(data_country_all_province),
        'country': country['country'],
        'country_code': country['country_code'],
        'province': '',
        'last_updated': ''
    }
Ejemplo n.º 3
0
def get_data(category):
    """
    Retrieves the data for the provided type. The data is cached for 1 hour.
    """

    # Adhere to category naming standard.
    category = category.lower().capitalize();

    # Request the data
    request = requests.get(base_url % category)
    text    = request.text

    # Parse the CSV.
    data = list(csv.DictReader(text.splitlines()))

    # The normalized locations.
    locations = []

    for item in data:
        # Filter out all the dates.
        history = dict(filter(lambda element: date_util.is_date(element[0]), item.items()))

        # Country for this location.
        country = item['Country/Region']

        # Latest data insert value.
        latest = list(history.values())[-1];

        # Normalize the item and append to locations.
        locations.append({
            # General info.
            'country':  country,
            'country_code': countrycodes.country_code(country),
            'province': item['Province/State'],

            # Coordinates.
            'coordinates': {
                'lat':  item['Lat'],
                'long': item['Long'],
            },

            # History.
            'history': history,

            # Latest statistic.
            'latest': int(latest or 0),
        })

    # Latest total.
    latest = sum(map(lambda location: location['latest'], locations))

    # Return the final data.
    return {
        'locations': locations,
        'latest': latest,
        'last_updated': datetime.utcnow().isoformat() + 'Z',
        'source': 'https://github.com/ExpDev07/coronavirus-tracker-api',
    }
Ejemplo n.º 4
0
def get_data(category):
    """
    Retrieves the data for the provided type.
    """

    # Adhere to category naming standard.
    category = category.lower().capitalize();
    
    # Request the data 
    request = requests.get(base_url % category)
    text    = request.text

    # Parse the CSV.
    data = list(csv.DictReader(text.splitlines()))

    # The normalized locations.
    locations = []

    for item in data:

        # Filter out all the dates.
        history = dict(filter(lambda element: date_util.is_date(element[0]), item.items()))

        # Normalize the item and append to locations.
        locations.append({
            # General info.
            'country':  item['Country/Region'],
            'province': item['Province/State'],

            # Coordinates.
            'coordinates': {
                'lat':  item['Lat'],
                'long': item['Long'],
            },

            # History.
            'history': history,

            # Latest statistic.
            'latest': int(list(history.values())[-1]),
        })

    # Latest total.
    latest = sum(map(lambda location: location['latest'], locations))

    # Return the final data.
    return {
        'locations': locations,
        'latest': latest
    }
Ejemplo n.º 5
0
def get_data(category):
    """
    Retrieves the data for the provided type. The data is cached for 1 hour.
    """
    category = category.lower()

    # URL to request data from.
    url = base_url + "time_series_covid19_%s_global.csv" % category

    request = requests.get(url)
    text = request.text
    # Parse the CSV.
    data = list(csv.DictReader(text.splitlines()))
    # The normalized locations.
    locations = []

    for item in data:
        # Filter out all the dates.
        history = dict(
            filter(lambda element: date_util.is_date(element[0]),
                   item.items()))
        # Sorted date history
        history = sorted_history_date(formated_date(history))
        # Country for this location.
        country = item['Country/Region']
        # Latest data insert value.
        latest = list(history.values())[-1]
        # Normalize the item and append to locations.
        locations.append({
            'country': country,
            'country_code': countrycodes.country_code(country),
            'province': item['Province/State'],
            # History.
            'history': history,
            # Latest statistic.
            'total': int(latest or 0),
        })

    # Latest total.
    total = sum(map(lambda location: location['total'], locations))
    # Return the final data.
    return {
        'locations': locations,
        'total': total,
        'last_updated': datetime.utcnow().isoformat() + 'Z'
    }
Ejemplo n.º 6
0
def get_all_data_by_category(category):
    """
    Get all the data of all the countries by category. There is three category (confirmed | death | recovered)
    """
    data = request.get_data_time_series(category)
    # The normalized locations.
    locations = []

    for item in data:
        # Filter out all the dates.
        history = dict(
            filter(lambda element: date_util.is_date(element[0]),
                   item.items()))
        # Sorted date history
        history = sorted_history_date(formated_date(history))
        # Country for this location.
        country = item['Country/Region']
        # Latest data insert value.
        latest = list(history.values())[-1]
        # Normalize the item and append to locations.
        locations.append({
            # General info.
            'country': country,
            'country_code': countrycodes.country_code(country),
            'province': item['Province/State'],
            # History.
            'history': history,
            # Latest statistic.
            'total': int(latest or 0),
        })

    # Latest total.
    total = sum(map(lambda location: location['total'], locations))
    # Return the final data.
    return {
        'locations': locations,
        'total': total,
        'last_updated': datetime.utcnow().isoformat() + 'Z'
    }
Ejemplo n.º 7
0
def test_is_date(str_date, fuzzy_bool, expected_value):
    """
    Testdata from https://stackoverflow.com/a/25341965/7120095
    """
    assert date.is_date(str_date, fuzzy=fuzzy_bool) is expected_value
def get_data(category):
    """
    Retrieves the data for the provided type. The data is cached for 1 hour.
    """

    # Adhere to category naming standard.
    category = category.lower().capitalize()

    print(">>>>>>", category)
    print("Base_url: >>> ", base_url % category)

    # Request the data
    request = requests.get(base_url % category)
    text = request.text

    # Parse the CSV.
    data = list(csv.DictReader(text.splitlines()))

    # The normalized locations.
    locations = {}

    latest_count = 0  # latest count

    for item in data:
        # Filter out all the dates.
        history = dict(
            filter(lambda element: date_util.is_date(element[0]),
                   item.items()))

        # Country for this location.
        country = item['Country/Region']

        # Latest data insert value.
        latest = list(history.values())[-1]

        # Normalize the item and append to locations.
        if (country not in locations):
            locations[country] = []

        locations[country].append({
            # General info.
            'country':
            country,
            'country_code':
            countrycodes.country_code(country),
            'province':
            item['Province/State'],

            # Coordinates.
            'coordinates': {
                'lat': item['Lat'],
                'long': item['Long'],
            },

            # History.
            'history':
            history,

            # Latest statistic.
            'latest':
            int(latest or 0),
        })
        latest_count += int(latest or 0)

    # Return the final data.
    return {
        'locations': locations,
        'latest': latest_count,
        'last_updated': datetime.utcnow().isoformat() + 'Z'
    }