def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in [3, 5, 7]: for t1 in [8, 16, 32, 64, 128, 256]: for t2 in [8, 16, 32, 64, 128, 256]: create_lib(build_campipe, app, app_data, g_size, [t1, t2]) for t in range(0, 0): print("Running for iteration #", t) campipe(app_data) elif app_data['mode'] == 'tune': auto_tune(app_data) else: # create shared lib create_lib(build_campipe, app, app_data) min_avg = 100000 nsamples = 5 print("[main] Benchmarking (%d samples)" % nsamples) for t in range(0, nsamples): # execute the compiled pipeline min_avg = min(min_avg, campipe(app_data)) print("[main] Minimum of averaged times across ", nsamples, "samples: ", min_avg, " ms") return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in [3, 5, 7]: for t1 in [8, 16, 32, 64, 128, 256]: for t2 in [8, 16, 32, 64, 128, 256]: create_lib(build_pyramid, app, app_data, g_size, [t1, t2]) for t in range (0, 0): print ("Running for iteration #", t) pyramid_blending(app_data) elif app_data['mode'] == 'tune' or app_data['mode'] == 'tune_execute': auto_tune(app_data) pass else: create_lib(build_pyramid, app, app_data) min_avg = 100000 for r in range (0,5): min_avg = min (min_avg, pyramid_blending(app_data)) print ("Minimum Average Time ", min_avg) return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in [3, 5, 7]: for t1 in [8, 16, 32, 64, 128, 256]: for t2 in [8, 16, 32, 64, 128, 256]: create_lib(build_harris, app, app_data, g_size, [t1, t2]) for t in range(0, 0): print("Running for iteration #", t) harrispipe(app_data) elif app_data['mode'] == 'tune': print("Tuning") auto_tune(app_data) else: create_lib(build_harris, app, app_data) _m = 10000000 nsamples = 5 for i in range(0, nsamples): _m = min(_m, harrispipe(app_data)) print("[main] Minimum of averaged times across ", nsamples, "samples: ", _m, " ms") return
def main(): print_header() print("[main]: initializing...") print("") app_data = {} app_data['app'] = app app_data['app_name'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in [3, 5, 7]: for t1 in [8, 16, 32, 64, 128, 256]: for t2 in [8, 16, 32, 64, 128, 256]: create_lib(build_unsharp, app, app_data, g_size, [1, t1, t2]) for t in range(0, 0): print("Running for iteration #", t) elif app_data['mode'] == 'tune': print("Tuning") auto_tune(app_data) else: create_lib(build_unsharp, app, app_data) min_avg = 100000 for i in range(0, 10000000): min_avg = min(min_avg, unsharp_mask(app_data)) print("minimum average ", min_avg) return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in [3, 5, 7]: for t1 in [8, 16, 32, 64, 128, 256]: for t2 in [8, 16, 32, 64, 128, 256]: create_lib(build_campipe, app, app_data, g_size, [t1, t2]) for t in range (0, 0): print ("Running for iteration #", t) campipe(app_data) elif app_data['mode'] == 'tune': auto_tune(app_data) else: # create shared lib create_lib(build_campipe, app, app_data) min_avg = 100000 for t in range (0, 5): # execute the compiled pipeline min_avg = min (min_avg, campipe(app_data)) print ("Minimum Average ", min_avg) return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in [3, 5, 7, 9, 11, 200]: for t1 in [8, 16, 32, 64, 128, 256]: for t2 in [8, 16, 32, 64, 128, 256]: create_lib(build_interpolate, app, app_data, g_size, [1, t1, t2]) for t in range(0, 0): print("Running for iteration #", t) interpolate(app_data) elif app_data['mode'] == 'tune': print("Tuning") auto_tune(app_data) else: create_lib(build_interpolate, app, app_data) min_avg = 10000 nsamples = 5 print("[main] Benchmarking (%d samples)" % nsamples) for t in range(0, nsamples): min_avg = min(min_avg, interpolate(app_data)) print("[main] Minimum of averaged times across ", nsamples, "runs: ", min_avg, " ms") return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in [3, 5, 7]: for t1 in [8, 16, 32, 64, 128, 256]: for t2 in [8, 16, 32, 64, 128, 256]: create_lib(build_bilateral, app, app_data, g_size, [1, t1, t2]) for t in range(0, 0): print("Running for iteration #", t) bilateralgrid(app_data) elif app_data['mode'] == 'tune': print("Tuning") auto_tune(app_data) else: create_lib(build_bilateral, app, app_data) min_avg = 10000 # input ("wait to run amplxe " + str(os.getpid())) # input ("wwww") nsamples = 5 print("[main] Benchmarking (%d samples)" % nsamples) for t in range(0, nsamples): min_avg = min(min_avg, bilateralgrid(app_data)) print("[main] Minimum of averaged times across ", nsamples, "samples: ", min_avg, " ms") return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune': auto_tune(app_data) else: create_lib(build_harris, app, app_data) harrispipe(app_data) return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune' or app_data['mode'] == 'tune_execute': auto_tune(app_data) pass else: create_lib(build_pyramid, app, app_data) pyramid_blending(app_data) return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune': auto_tune(app_data) else: # create shared lib create_lib(build_campipe, app, app_data) # execute the compiled pipeline campipe(app_data) return
def main(): print_header() print("[main]: initializing...") print("") app_data = {} app_data['app'] = app app_data['app_name'] = app app_data['ROOT'] = ROOT init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune': print("Tuning") auto_tune(app_data) else: create_lib(build_unsharp, app, app_data) unsharp_mask(app_data) return
def main(): print_header() print("[main]: initializing...") print("") app_data = {} app_data['app'] = app app_data['app_name'] = app app_data['ROOT'] = ROOT g_sizes = [3, 5, 7] tile_sizes = [8, 16, 32, 64] #, 128, 256] init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune+': for g_size in g_sizes: for t1 in tile_sizes: for t2 in tile_sizes: create_lib(build_mfd, app, app_data, g_size, [1, t1, t2]) for t in range(0, 0): print("Running for iteration #", t) elif app_data['mode'] == 'tune': print("Tuning") auto_tune(app_data) else: create_lib(build_mfd, app, app_data) min_avg = 100000 nsamples = 5 for i in range(0, nsamples): min_avg = min(min_avg, minifluxdiv(app_data)) print("[main] Minimum of averaged times across ", nsamples, "samples: ", min_avg, " ms") return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT # init all the required data init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune': auto_tune(app_data) else: #------------------------------------------------------------------- create_lib(None, "norm", app_data) create_lib(build_mg_cycle, app_data['cycle_name'], app_data) #------------------------------------------------------------------- init_norm(app_data) multigrid(app_data) #------------------------------------------------------------------- return
def main(): print_header() app_data = {} app_data['app'] = app app_data['ROOT'] = ROOT # init all the required data init_all(app_data) print_config(app_data) if app_data['mode'] == 'tune': print("Tuning...") auto_tune(app_data) else: #------------------------------------------------------------------- create_lib(None, "norm", app_data) create_lib(build_jacobi, app, app_data) #------------------------------------------------------------------- init_norm(app_data) exec_jacobi(app_data) #------------------------------------------------------------------- return