Ejemplo n.º 1
0
    def loopProcessImage(self, imgdata):
        """
		Over-writes the particleLoop processImage and uses the appionLoop processImage
		"""
        #GET THE TILT PAIR
        tiltdata = apTiltPair.getTiltPair(imgdata)
        if tiltdata is None:
            return

        ### process images
        procimgpath = os.path.join(self.params['rundir'],
                                   imgdata['filename'] + '.dwn.mrc')
        if not os.path.isfile(procimgpath):
            apDisplay.printMsg("processing mrc for first image")
            apFindEM.processAndSaveImage(imgdata, params=self.params)
        procimg1 = apImage.mrcToArray(procimgpath, msg=False)

        procimgpath = os.path.join(self.params['rundir'],
                                   tiltdata['filename'] + '.dwn.mrc')
        if not os.path.isfile(procimgpath):
            apDisplay.printMsg("processing mrc for second image")
            apFindEM.processAndSaveImage(tiltdata, params=self.params)
        procimg2 = apImage.mrcToArray(procimgpath, msg=False)

        #RUN THE ALIGNER GUI
        result = self.runTiltAligner(imgdata, tiltdata)
        if self.badprocess is True:
            return
        numpeaks = len(self.peaktree1)
        #apDisplay.printMsg("Found "+str(numpeaks)+" particles for "+apDisplay.shortenImageName(imgdata['filename']))
        self.stats['lastpeaks'] = numpeaks

        ### mask the images
        procimg1, procimg2 = apTiltTransform.maskOverlapRegion(
            procimg1, procimg2, self.data)

        #CREATE PEAK JPEG
        if self.threadJpeg is True:
            threading.Thread(target=apPeaks.createTiltedPeakJpeg,
                             args=(imgdata, tiltdata, self.peaktree1,
                                   self.peaktree2, self.params, procimg1,
                                   procimg2)).start()
        else:
            apPeaks.createTiltedPeakJpeg(imgdata, tiltdata, self.peaktree1,
                                         self.peaktree2, self.params, procimg1,
                                         procimg2)

        #EXTRA DONE DICT CALL
        self._writeDoneDict(tiltdata['filename'])
def runTestShift(img1name, img2name, imgpath, tiltdiff, coord):
	img1path = os.path.join(imgpath, img1name)
	img2path = os.path.join(imgpath, img2name)
	print img1path
	print img2path

	img1 = apImage.binImg(apImage.mrcToArray(img1path),4)
	img2 = apImage.binImg(apImage.mrcToArray(img2path),4)

	apImage.arrayToMrc(img1,"img1a-raw.mrc")
	apImage.arrayToMrc(img2,"img2a-raw.mrc")

	origin, newpart, snr = apTiltShift.getTiltedCoordinates(img1, img2, tiltdiff, coord)
	apImage.arrayToJpegPlusPeak(img1, "img1a-guess.jpg", (origin[1], origin[0]))
	apImage.arrayToJpegPlusPeak(img2, "img2a-guess.jpg", (newpart[1], newpart[0]))
	def loopProcessImage(self, imgdata):
		"""
		Over-writes the particleLoop processImage and uses the appionLoop processImage
		"""
		#GET THE TILT PAIR
		tiltdata = apTiltPair.getTiltPair(imgdata)
		if tiltdata is None:
			return

		### process images
		procimgpath = os.path.join(self.params['rundir'], imgdata['filename']+'.dwn.mrc')
		if not os.path.isfile(procimgpath):
			apDisplay.printMsg("processing mrc for first image")
			apFindEM.processAndSaveImage(imgdata, params=self.params)
		procimg1 = apImage.mrcToArray(procimgpath, msg=False)

		procimgpath = os.path.join(self.params['rundir'], tiltdata['filename']+'.dwn.mrc')
		if not os.path.isfile(procimgpath):
			apDisplay.printMsg("processing mrc for second image")
			apFindEM.processAndSaveImage(tiltdata, params=self.params)
		procimg2 = apImage.mrcToArray(procimgpath, msg=False)

		#RUN THE ALIGNER GUI
		result = self.runTiltAligner(imgdata, tiltdata)
		if self.badprocess is True:
			return
		numpeaks = len(self.peaktree1)
		#apDisplay.printMsg("Found "+str(numpeaks)+" particles for "+apDisplay.shortenImageName(imgdata['filename']))
		self.stats['lastpeaks'] = numpeaks

		### mask the images
		procimg1, procimg2 = apTiltTransform.maskOverlapRegion(procimg1, procimg2, self.data)

		#CREATE PEAK JPEG
		if self.threadJpeg is True:
			threading.Thread(target=apPeaks.createTiltedPeakJpeg, args=(imgdata, tiltdata, self.peaktree1,
				self.peaktree2, self.params, procimg1, procimg2)).start()
		else:
			apPeaks.createTiltedPeakJpeg(imgdata, tiltdata, self.peaktree1, self.peaktree2, self.params,
				procimg1, procimg2)

		#EXTRA DONE DICT CALL
		self._writeDoneDict(tiltdata['filename'])
	def loopProcessImage(self, imgdata):
		"""
		setup like this to override things
		"""
		self.filtimgpath = os.path.join(self.params['rundir'], imgdata['filename']+'.dwn.mrc')

		if os.path.isfile(self.filtimgpath) and self.params['continue'] is True:
			apDisplay.printMsg("reading filtered image from mrc file")
			self.filtarray = apImage.mrcToArray(self.filtimgpath, msg=False)

		peaktree = self.processImage(imgdata, self.filtarray)

		return peaktree
 def openImageFile(self, filename):
     self.filename = filename
     if filename[-4:] == '.spi':
         array = apImage.spiderToArray(filename, msg=False)
         return array
     elif filename[-4:] == '.mrc':
         array = apImage.mrcToArray(filename, msg=False)
         return array
     else:
         image = Image.open(filename)
         array = apImage.imageToArray(image, msg=False)
         array = array.astype(numpy.float32)
         return array
     return None
	def openImageFile(self, filename):
		self.filename = filename
		if filename[-4:] == '.spi':
			array = apImage.spiderToArray(filename, msg=False)
			return array
		elif filename[-4:] == '.mrc':
			array = apImage.mrcToArray(filename, msg=False)
			return array
		else:
			image = Image.open(filename)
			array = apImage.imageToArray(image, msg=False)
			array = array.astype(numpy.float32)
			return array
		return None
    def loopProcessImage(self, imgdata):
        """
		setup like this to override things
		"""
        self.filtimgpath = os.path.join(self.params['rundir'],
                                        imgdata['filename'] + '.dwn.mrc')

        if os.path.isfile(
                self.filtimgpath) and self.params['continue'] is True:
            apDisplay.printMsg("reading filtered image from mrc file")
            self.filtarray = apImage.mrcToArray(self.filtimgpath, msg=False)

        peaktree = self.processImage(imgdata, self.filtarray)

        return peaktree
def getTemplates(params):
        """
        Inputs:
                params['templateIds'], a list of template ids
                params['apix'], desired pixel size
                params['rundir'], output directory
                image processing params
        Processing:
                Copies, scales, and filters templates
        Outputs:
                params['templatelist'], a list of template file basenames
        """

        apDisplay.printMsg("getting templates")

        if not params['templateIds']:
                apDisplay.printError("No template ids were specified")

        params['templatelist'] = [] #list of scaled files
        for i,templateid in enumerate(params['templateIds']):
                index = i+1
                #print templateid
                templateid = int(templateid)
                if templateid < 0:
                        continue

                #QUERY DB FOR TEMPLATE INFO
                templatedata = appiondata.ApTemplateImageData.direct_query(abs(templateid))
                if not (templatedata):
                        apDisplay.printError("Template Id "+str(templateid)+" was not found in database.")

                #COPY THE FILE OVER
                origtemplatepath = os.path.join(templatedata['path']['path'], templatedata['templatename'])
                if not os.path.isfile(origtemplatepath):
                        apDisplay.printError("Template file not found: "+origtemplatepath)
                apDisplay.printMsg("getting template: "+origtemplatepath)
                copytemplatepath = os.path.join(params['rundir'], "origTemplate"+str(index)+".mrc")
                scaletemplatepath = os.path.join(params['rundir'], "scaledTemplate"+str(index)+".mrc")
                filtertemplatepath = os.path.join(params['rundir'], "filterTemplate"+str(index)+".mrc")
                #masktemplatepath = os.path.join(params['rundir'], "maskTemplate"+str(index)+".mrc")
                shutil.copyfile(origtemplatepath, copytemplatepath)

                #RESCALE THE TEMPLATE
                templatearray = apImage.mrcToArray(copytemplatepath)
                #scale to correct apix
                scalefactor = templatedata['apix'] / params['apix']
                if abs(scalefactor - 1.0) > 0.01:
                        apDisplay.printMsg("rescaling template "+str(index)+": "+str(templatedata['apix'])+"->"+str(params['apix']))
                templatearray = scaleTemplate(templatearray, scalefactor)
                apImage.arrayToMrc(templatearray, scaletemplatepath, msg=False)
                #bin and filter
                templatearray = apImage.preProcessImage(templatearray, params=params, highpass=0, planeReg=False, invert=False)
                #write to file
                apImage.arrayToMrc(templatearray, filtertemplatepath, msg=False)

                ### MASK THE TEMPLATE AND SAVE
                #mask the template, visual purposes only
                #maskrad = params['diam']/params['apix']/params['bin']/2.0
                #maskarray =
                #apImage.arrayToMrc(templatearray, masktemplatepath, msg=False)

                #ADD TO TEMPLATE LIST
                params['templatelist'].append(os.path.basename(filtertemplatepath))

                ### ADD MIRROR IF REQUESTED
                if 'templatemirrors' in params and params['templatemirrors'] is True:
                        mirrortemplatepath = os.path.join(params['rundir'], "mirrorTemplate"+str(index)+".mrc")
                        mirrorarray = numpy.fliplr(templatearray)
                        apImage.arrayToMrc(mirrorarray, mirrortemplatepath, msg=False)
                        params['templatelist'].append(os.path.basename(mirrortemplatepath))

        #FINISH LOOP OVER template ids
        #Set the apix
        params['templateapix'] = params['apix']
        apDisplay.printMsg("scaled & filtered "+str(len(params['templatelist']))+" file(s)")

        return params['templatelist']
Ejemplo n.º 9
0
	def processImage(self, imgdata):
		self.ctfvalues = {}
		bestdef  = ctfdb.getBestCtfByResolution(imgdata, msg=True)
		apix = apDatabase.getPixelSize(imgdata)
		if (not (self.params['onepass'] and self.params['zeropass'])):
			maskhighpass = False
			ace2inputpath = os.path.join(imgdata['session']['image path'],imgdata['filename']+".mrc")
		else:
			maskhighpass = True
			filterimg = apImage.maskHighPassFilter(imgdata['image'],apix,1,self.params['zeropass'],self.params['onepass'])
			ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc")
			mrc.write(filterimg,ace2inputpath)

		# make sure that the image is a square
		dimx = imgdata['camera']['dimension']['x']
		dimy = imgdata['camera']['dimension']['y']
		if dimx != dimy:
			dims = [dimx,dimy]
			dims.sort()
			apDisplay.printMsg("resizing image: %ix%i to %ix%i" % (dimx,dimy,dims[0],dims[0]))
			mrcarray = apImage.mrcToArray(ace2inputpath,msg=False)
			clippedmrc = apImage.frame_cut(mrcarray,[dims[0],dims[0]])
			ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc")
			apImage.arrayToMrc(clippedmrc,ace2inputpath,msg=False)

		### pad out image to speed up FFT calculations for non-standard image sizes
		print "checking prime factor"
		if primefactor.isGoodStack(dimx) is False:
			goodsize = primefactor.getNextEvenPrime(dimx)
			factor = float(goodsize) / float(dimx)
			apDisplay.printMsg("padding image:  %ix%i to %ix%i" % (dimx,dimy,dimx*factor,dimy*factor))
			mrcarray = apImage.mrcToArray(ace2inputpath,msg=False)
#			paddedmrc = imagefun.pad(mrcarray, None, factor)
			paddedmrc = apImage.frame_constant(mrcarray, (dimx*factor,dimy*factor), cval=mrcarray.mean())
			ace2inputpath = os.path.join(self.params['rundir'],imgdata['filename']+".mrc")
			apImage.arrayToMrc(paddedmrc,ace2inputpath,msg=False)

		inputparams = {
			'input': ace2inputpath,
			'cs': self.params['cs'],
			'kv': imgdata['scope']['high tension']/1000.0,
			'apix': apix,
			'binby': self.params['bin'],
		}

		### make standard input for ACE 2
		apDisplay.printMsg("Ace2 executable: "+self.ace2exe)
		commandline = ( self.ace2exe
			+ " -i " + str(inputparams['input'])
			+ " -b " + str(inputparams['binby'])
			+ " -c " + str(inputparams['cs'])
			+ " -k " + str(inputparams['kv'])
			+ " -a " + str(inputparams['apix'])
			+ " -e " + str(self.params['edge_b'])+","+str(self.params['edge_t'])
			+ " -r " + str(self.params['rotblur'])
			+ "\n" )

		### run ace2
		apDisplay.printMsg("running ace2 at "+time.asctime())
		apDisplay.printColor(commandline, "purple")

		t0 = time.time()

		if self.params['verbose'] is True:
			ace2proc = subprocess.Popen(commandline, shell=True)
		else:
			aceoutf = open("ace2.out", "a")
			aceerrf = open("ace2.err", "a")
			ace2proc = subprocess.Popen(commandline, shell=True, stderr=aceerrf, stdout=aceoutf)

		ace2proc.wait()

		### check if ace2 worked
		basename = os.path.basename(ace2inputpath)
		imagelog = basename+".ctf.txt"
		if not os.path.isfile(imagelog) and self.stats['count'] <= 1:
			### ace2 always crashes on first image??? .fft_wisdom file??
			time.sleep(1)

			if self.params['verbose'] is True:
				ace2proc = subprocess.Popen(commandline, shell=True)
			else:
				aceoutf = open("ace2.out", "a")
				aceerrf = open("ace2.err", "a")
				ace2proc = subprocess.Popen(commandline, shell=True, stderr=aceerrf, stdout=aceoutf)

			ace2proc.wait()

		if self.params['verbose'] is False:
			aceoutf.close()
			aceerrf.close()
		if not os.path.isfile(imagelog):
			lddcmd = "ldd "+self.ace2exe
			lddproc = subprocess.Popen(lddcmd, shell=True)
			lddproc.wait()
			apDisplay.printError("ace2 did not run")
		apDisplay.printMsg("ace2 completed in " + apDisplay.timeString(time.time()-t0))

		### parse log file
		self.ctfvalues = {
			'cs': self.params['cs'],
			'volts': imgdata['scope']['high tension'],
		}
		logf = open(imagelog, "r")
		apDisplay.printMsg("reading log file %s"%(imagelog))
		for line in logf:
			sline = line.strip()
			if re.search("^Final Defocus: ", sline):
				### old ACE2
				apDisplay.printError("This old version of ACE2 has a bug in the astigmastism, please upgrade ACE2 now")
				#parts = sline.split()
				#self.ctfvalues['defocus1'] = float(parts[2])
				#self.ctfvalues['defocus2'] = float(parts[3])
				### convert to degrees
				#self.ctfvalues['angle_astigmatism'] = math.degrees(float(parts[4]))
			elif re.search("^Final Defocus \(m,m,deg\):", sline):
				### new ACE2
				apDisplay.printMsg("Reading new ACE2 defocus")
				parts = sline.split()
				#print parts
				self.ctfvalues['defocus1'] = float(parts[3])
				self.ctfvalues['defocus2'] = float(parts[4])
				# ace2 defines negative angle from +x toward +y
				self.ctfvalues['angle_astigmatism'] = -float(parts[5])
			elif re.search("^Amplitude Contrast:",sline):
				parts = sline.split()
				self.ctfvalues['amplitude_contrast'] = float(parts[2])
			elif re.search("^Confidence:",sline):
				parts = sline.split()
				self.ctfvalues['confidence'] = float(parts[1])
				self.ctfvalues['confidence_d'] = float(parts[1])
		logf.close()

		### summary stats
		apDisplay.printMsg("============")
		avgdf = (self.ctfvalues['defocus1']+self.ctfvalues['defocus2'])/2.0
		ampconst = 100.0*self.ctfvalues['amplitude_contrast']
		pererror = 100.0 * (self.ctfvalues['defocus1']-self.ctfvalues['defocus2']) / avgdf
		apDisplay.printMsg("Defocus: %.3f x %.3f um (%.2f percent astigmatism)"%
			(self.ctfvalues['defocus1']*1.0e6, self.ctfvalues['defocus2']*1.0e6, pererror ))
		apDisplay.printMsg("Angle astigmatism: %.2f degrees"%(self.ctfvalues['angle_astigmatism']))
		apDisplay.printMsg("Amplitude contrast: %.2f percent"%(ampconst))

		apDisplay.printColor("Final confidence: %.3f"%(self.ctfvalues['confidence']),'cyan')

		### double check that the values are reasonable
		if avgdf > self.params['maxdefocus'] or avgdf < self.params['mindefocus']:
			apDisplay.printWarning("bad defocus estimate, not committing values to database")
			self.badprocess = True

		if ampconst < 0.0 or ampconst > 80.0:
			apDisplay.printWarning("bad amplitude contrast, not committing values to database")
			self.badprocess = True

		if self.ctfvalues['confidence'] < 0.2:
			apDisplay.printWarning("bad confidence value, not committing values to database")
			self.badprocess = True

		## create power spectra jpeg
		mrcfile = imgdata['filename']+".mrc.edge.mrc"
		if os.path.isfile(mrcfile):
			jpegfile = os.path.join(self.powerspecdir, apDisplay.short(imgdata['filename'])+".jpg")
			ps = apImage.mrcToArray(mrcfile,msg=False)
			c = numpy.array(ps.shape)/2.0
			ps[c[0]-0,c[1]-0] = ps.mean()
			ps[c[0]-1,c[1]-0] = ps.mean()
			ps[c[0]-0,c[1]-1] = ps.mean()
			ps[c[0]-1,c[1]-1] = ps.mean()
			#print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
			ps = numpy.log(ps+1.0)
			ps = (ps-ps.mean())/ps.std()
			cutoff = -2.0*ps.min()
			ps = numpy.where(ps > cutoff, cutoff, ps)
			cutoff = ps.mean()
			ps = numpy.where(ps < cutoff, cutoff, ps)
			#print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
			apImage.arrayToJpeg(ps, jpegfile, msg=False)
			apFile.removeFile(mrcfile)
			self.ctfvalues['graph3'] = jpegfile
		otherfiles = glob.glob(imgdata['filename']+".*.txt")

		### remove extra debugging files
		for filename in otherfiles:
			if filename[-9:] == ".norm.txt":
				continue
			elif filename[-8:] == ".ctf.txt":
				continue
			else:
				apFile.removeFile(filename)

		if maskhighpass and os.path.isfile(ace2inputpath):
			apFile.removeFile(ace2inputpath)

		return
Ejemplo n.º 10
0
def fakeOutput(imgname, ccmapfile, params):
    a = apImage.mrcToArray(imgname)
    a = numpy.zeros(a.shape)
    apImage.arrayToMrc(a, ccmapfile)
    apFile.safeCopy('/home/acheng/Projects/Gfindem/example.box',
                    getBoxFileName(ccmapfile))
Ejemplo n.º 11
0
def fakeOutput(imgname,ccmapfile,params):
	a = apImage.mrcToArray(imgname)
	a = numpy.zeros(a.shape)
	apImage.arrayToMrc(a,ccmapfile)
	apFile.safeCopy('/home/acheng/Projects/Gfindem/example.box', getBoxFileName(ccmapfile))
Ejemplo n.º 12
0
def runSpectralFindEM(imgdict, params, thread=False):
    """
        runs a separate thread of findem.exe for each template
        to get cross-correlation maps
        """
    imgname = imgdict['filename']
    dwnimgname = os.path.splitext(imgname)[0] + ".dwn.mrc"
    os.chdir(params['rundir'])
    joblist = []
    ccmaplist = []

    processAndSaveImage(imgdict, params)
    ### FindEM crashes when an input image is longer than 76 characters
    if len(dwnimgname) > 76:
        randlink = ''.join(
            random.choice(string.ascii_uppercase + string.digits)
            for x in range(10))
        randlink += '.mrc'
        os.symlink(dwnimgname, randlink)

    if len(params['templatelist']) < 1:
        apDisplay.printError("templatelist == 0; there are no templates")

    for i, templatename in enumerate(params['templatelist']):
        classavg = i + 1

        #First round: normal findem: template x image
        numstr = "%03d" % (100 + classavg)
        ccmapfile1 = "cccmaxmap" + numstr + ".mrc"
        apFile.removeFile(ccmapfile1)
        params["startang" + str(100 + classavg)] = params["startang" +
                                                          str(classavg)]
        params["endang" + str(100 + classavg)] = params["endang" +
                                                        str(classavg)]
        params["incrang" + str(100 + classavg)] = params["incrang" +
                                                         str(classavg)]
        if len(dwnimgname) > 76:
            feed = findEMString(100 + classavg, templatename, randlink,
                                ccmapfile1, params)
        else:
            feed = findEMString(100 + classavg, templatename, dwnimgname,
                                ccmapfile1, params)
        execFindEM(feed)

        #Second round: template x template
        numstr = "%03d" % (200 + classavg)
        ccmapfile2 = "cccmaxmap" + numstr + ".mrc"
        apFile.removeFile(ccmapfile2)
        params["startang" + str(200 + classavg)] = params["startang" +
                                                          str(classavg)]
        params["endang" + str(200 + classavg)] = params["endang" +
                                                        str(classavg)]
        params["incrang" + str(200 + classavg)] = params["incrang" +
                                                         str(classavg)]
        feed = findEMString(200 + classavg, templatename, templatename,
                            ccmapfile2, params)
        execFindEM(feed)

        #Final round: (template x template) x (template x image) = spectral
        numstr = "%03d" % (300 + classavg)
        ccmapfile3 = "cccmaxmap" + numstr + ".mrc"
        apFile.removeFile(ccmapfile3)
        params["startang" + str(300 + classavg)] = 0
        params["endang" + str(300 + classavg)] = 10
        params["incrang" + str(300 + classavg)] = 20
        feed = findEMString(300 + classavg, ccmapfile2, ccmapfile1, ccmapfile3,
                            params)
        execFindEM(feed)

        #READ OUTPUT FILE
        if not os.path.isfile(ccmapfile3):
            apDisplay.printError("findem.exe did not run or crashed.\n" +
                                 "Did you source useappion.sh?")
        else:
            ccmaxmap = apImage.mrcToArray(ccmapfile3)
            ccmaplist.append(ccmaxmap)

    return ccmaplist
Ejemplo n.º 13
0
	def processImage(self, imgdata):
		"""
		time ./ctffind3.exe << eof
		micrograph.mrc
		montage.pow
		2.0, 200.0, 0.07, 60000, 7.0, 2 #! CS[mm], HT[kV], AmpCnst, XMAG, DStep[um], PAve
		128, 200.0, 8.0, 5000.0, 40000.0, 5000.0 #! Box, ResMin[A], ResMax[A], dFMin[A], dFMax[A], FStep
		eof

		CARD 1: Input file name for image
		CARD 2: Output file name to check result
		CARD 3: CS[mm], HT[kV], AmpCnst, XMAG, DStep[um],PAve
		CARD 4: Box, ResMin[A], ResMax[A], dFMin[A], dFMax[A], FStep,  dAst[A]
		CTFTILT also asks for TiltA[deg], TiltR[deg] at CARD4

		The output image file to check the result of the fitting
		shows the filtered average power spectrum of the input
		image in one half, and the fitted CTF (squared) in the
		other half. The two halves should agree very well for a
		successful fit.

		CS: Spherical aberration coefficient of the objective in mm
		HT: Electron beam voltage in kV
		AmpCnst: Amount of amplitude contrast (fraction). For ice
			images 0.07, for negative stain about 0.15.
		XMAG: Magnification of original image
		DStep: Pixel size on scanner in microns, or apix*mag/10000
		PAve: Pixel averaging (PAve x PAve) for input image

		Box: Tile size. The program divides the image into square
			tiles and calculates the average power spectrum. Tiles
			with a significantly higher or lower variance are
			excluded; these are parts of the image which are unlikely
			to contain useful information (beam edge, film number
			etc). IMPORTANT: Box must have a even pixel dimensions.
		ResMin: Low resolution end of data to be fitted.
		ResMaX: High resolution end of data to be fitted.
		dFMin: Starting defocus value for grid search in Angstrom.
			Positive values represent an underfocus. The program
			performs a systematic grid search of defocus values
			and astigmatism before fitting a CTF to machine
			precision.
		dFMax: End defocus value for grid search in Angstrom.
		FStep: Step width for grid search in Angstrom.
		dAst: An additional parameter, dAst, was added to CARD 4 to restrain 
			the amount of astigmatism in the CTF fit. This makes the 
			fitting procedure more robust, especially in cases where 
			the Thon rings are not easily visible.
		TiltA: guessed tilt angle
		TiltR: angular range for initial coarse search 
		"""

		#get Defocus in Angstroms
		self.ctfvalues = {}
		if self.params['nominal'] is not None:
			nominal = abs(self.params['nominal']*1e4)
		else:
			nominal = abs(imgdata['scope']['defocus']*-1.0e10)
		ctfvalue = ctfdb.getBestCtfByResolution(imgdata)
		if ctfvalue is not None:
			"""
			## CTFFIND V3.5 (7-March-2012) prefers the smaller of the two values for astigmatic images
			I found that say you have an image with 1.1um and 1.5um defocus astigmatism. If you give 
			CTFFIND the average value of 1.3um for the defocus and 0.4um astig (dast) then it will 
			try to fit 1.3um and 1.8um, so you need to give it the minimum value (1.1um) for it to 
			fit 1.1um and 1.5um.
			"""
			bestdef = min(ctfvalue['defocus1'],ctfvalue['defocus2'])*1.0e10
		else:
			bestdef = nominal
	
		if ctfvalue is not None and self.params['bestdb'] is True:
			bestampcontrast = round(ctfvalue['amplitude_contrast'],3)
			beststigdiff = round(abs(ctfvalue['defocus1'] - ctfvalue['defocus2'])*1e10,1)
		else:
			bestampcontrast = self.params['amp'+self.params['medium']]
			beststigdiff = self.params['dast']

		if ctfvalue is not None and self.params['bestdb'] is True:
			### set res max from resolution_80_percent
			gmean = (ctfvalue['resolution_80_percent']*ctfvalue['resolution_50_percent']*self.params['resmax'])**(1/3.)
			if gmean < self.params['resmin']:
				# replace only if valid Issue #3291, #3547     
				self.params['resmax'] = round(gmean,2)
				apDisplay.printColor("Setting resmax to the geometric mean of resolution values", "purple")

		# dstep is the physical detector pixel size
		dstep = None
		if 'camera' in imgdata and imgdata['camera'] and imgdata['camera']['pixel size']:
			dstep = imgdata['camera']['pixel size']['x']
		if dstep is None:
			dstep = apDatabase.getPixelSize(imgdata)*imgdata['scope']['magnification']/10000.0
			dstep /=1e6
		dstep = float(dstep)
		mpixelsize = apDatabase.getPixelSize(imgdata)*1e-10
		if self.params['apix_man'] is not None:
			mpixelsize = self.params['apix_man']*1e-10
		xmag = dstep / mpixelsize
		apDisplay.printMsg("Xmag=%d, dstep=%.2e, mpix=%.2e"%(xmag, dstep, mpixelsize))
		inputparams = {
			'orig': os.path.join(imgdata['session']['image path'], imgdata['filename']+".mrc"),
			'input': apDisplay.short(imgdata['filename'])+".mrc",
			'output': apDisplay.short(imgdata['filename'])+"-pow.mrc",

			'cs': self.params['cs'],
			'kv': imgdata['scope']['high tension']/1000.0,
			'ampcnst': bestampcontrast,
			'xmag': xmag,
			'dstep': dstep*1e6,
			'pixavg': self.params['bin'],

			'box': self.params['fieldsize'],
			'resmin': self.params['resmin'],
			'resmax': self.params['resmax'],
			'defstep': self.params['defstep'], #round(defocus/32.0, 1),
			'dast': beststigdiff,
		}
		defrange = self.params['defstep'] * self.params['numstep'] ## do 25 steps in either direction
		inputparams['defmin']= round(bestdef-defrange, 1) #in meters
		if inputparams['defmin'] < 0:
			apDisplay.printWarning("Defocus minimum is less than zero")
			inputparams['defmin'] = inputparams['defstep']
		inputparams['defmax']= round(bestdef+defrange, 1) #in meters
		apDisplay.printColor("Defocus search range: %d A to %d A (%.2f to %.2f um)"
			%(inputparams['defmin'], inputparams['defmax'], 
			inputparams['defmin']*1e-4, inputparams['defmax']*1e-4), "cyan")

		### secondary lock check right before it starts on the real part
		if self.params['parallel'] and os.path.isfile(apDisplay.short(imgdata['filename'])+".mrc"):
			# This is a secondary image lock check, checking the first output of the process.
			# It alone is not good enough
			apDisplay.printWarning('Some other parallel process is working on the same image. Skipping')
			return
		### create local link to image
		if not os.path.exists(inputparams['input']):
			os.symlink(inputparams['orig'], inputparams['input'])

		### make standard input for ctf estimation
		line1cmd = inputparams['input']+"\n"
		line2cmd = inputparams['output']+"\n"
		line3cmd = (
			str(inputparams['cs'])+","
			+ str(inputparams['kv'])+","
			+ str(inputparams['ampcnst'])+","
			+ str(inputparams['xmag'])+","
			+ str(inputparams['dstep'])+","
			+ str(inputparams['pixavg'])+"\n")
		line4cmd = (
			str(inputparams['box'])+","
			+ str(inputparams['resmin'])+","
			+ str(inputparams['resmax'])+","
			+ str(inputparams['defmin'])+","
			+ str(inputparams['defmax'])+","
			+ str(inputparams['defstep'])+","
			+ str(inputparams['dast']))

		### additional ctftilt parameters
		if self.params['ctftilt'] is True:
			tiltang = apDatabase.getTiltAngleDeg(imgdata)
			line4cmd += (","+str(tiltang)+",10")
		line4cmd += "\n"

		if os.path.isfile(inputparams['output']):
			# program crashes if this file exists
			apFile.removeFile(inputparams['output'])

		t0 = time.time()
		apDisplay.printMsg("running ctf estimation at "+time.asctime())
		ctfproglog = os.path.join(self.logdir, os.path.splitext(imgdata['filename'])[0]+"-ctfprog.log")
		logf = open(ctfproglog, "w")
		ctfprogproc = subprocess.Popen(self.ctfprgmexe, shell=True, stdin=subprocess.PIPE, stdout=logf)
		apDisplay.printColor(self.ctfprgmexe, "magenta")
		apDisplay.printColor(line1cmd.strip(),"magenta")
		apDisplay.printColor(line2cmd.strip(),"magenta")
		apDisplay.printColor(line3cmd.strip(),"magenta")
		apDisplay.printColor(line4cmd.strip(),"magenta")
		ctfprogproc.stdin.write(line1cmd)
		ctfprogproc.stdin.write(line2cmd)
		ctfprogproc.stdin.write(line3cmd)
		ctfprogproc.stdin.write(line4cmd)
		ctfprogproc.communicate()
		logf.close()

		apDisplay.printMsg("ctf estimation completed in "+apDisplay.timeString(time.time()-t0))

		#apFile.removeFile(inputparams['input'])

		### parse ctf estimation output
		self.ctfvalues = {}
		logf = open(ctfproglog, "r")

		## ctffind & ctftilt have diff # values
		numvals = 6
		if self.params['ctftilt'] is True:
			numvals=8 
		for line in logf:
			sline = line.strip()
			if sline[-12:] == "Final Values":
				#print sline
				if '**********' in sline:
					sline = re.sub('**********', ' **********', sline)
				bits = sline.split()
				if len(bits) != numvals:
					apDisplay.printError("wrong number of values in "+str(bits))
				for i,bit in enumerate(bits[0:(numvals-2)]):
					bits[i] = float(bit)
				self.ctfvalues = {
					'defocus1':	float(bits[0])*1e-10,
					'defocus2':	float(bits[1])*1e-10,
					# WARNING: this is the negative of the direct result
					'angle_astigmatism':	float(bits[2]),
					'amplitude_contrast': inputparams['ampcnst'],
					'cross_correlation':	float(bits[numvals-3]),
					'nominal':	nominal*1e-10,
					'defocusinit':	bestdef*1e-10,
					'cs': self.params['cs'],
					'volts': imgdata['scope']['high tension'],
					'confidence': float(bits[numvals-3]),
					'confidence_d': round(math.sqrt(abs(float(bits[numvals-3]))), 5)
				}
				if self.params['ctftilt'] is True:
					self.ctfvalues['tilt_axis_angle']=float(bits[3])
					self.ctfvalues['tilt_angle']=float(bits[4])

		### write to log file
		f = open("ctfvalues.log", "a")
		f.write("=== "+imgdata['filename']+" ===\n")
		if not self.ctfvalues:
			nominaldf =  imgdata['scope']['defocus']
		else:
			nominaldf = self.ctfvalues['nominal']
		line1 = ("nominal=%.1e, bestdef=%.1e," %
			( nominaldf, self.ctfvalues['defocusinit']))
		if self.params['ctftilt'] is True:
			self.ctfvalues['origtiltang'] = tiltang
			line1+=" tilt=%.1f,"%tiltang
		apDisplay.printMsg(line1)
		f.write(line1)
		line2 = ("def_1=%.1e, def_2=%.1e, astig_angle=%.1f, cross_corr=%.3f,\n" %
			( self.ctfvalues['defocus1'], self.ctfvalues['defocus2'], self.ctfvalues['angle_astigmatism'],
				self.ctfvalues['cross_correlation'] ))
		if self.params['ctftilt'] is True:
			line2+= ("tilt_angle=%.1f, tilt_axis_angle=%.1f,\n" %
				(self.ctfvalues['tilt_angle'], self.ctfvalues['tilt_axis_angle']))
		apDisplay.printMsg(line2)
		f.write(line2)
		f.close()

		#convert powerspectra to JPEG
		outputjpgbase = os.path.basename(os.path.splitext(inputparams['output'])[0]+".jpg")
		self.lastjpg = outputjpgbase
		outputjpg = os.path.join(self.powerspecdir, self.lastjpg)
		powspec = apImage.mrcToArray(inputparams['output'])
		apImage.arrayToJpeg(powspec, outputjpg)
		shutil.move(inputparams['output'], os.path.join(self.powerspecdir, inputparams['output']))
		self.ctfvalues['graph1'] = outputjpg

		#apFile.removeFile(inputparams['input'])

		return
def getTemplates(params):
    """
        Inputs:
                params['templateIds'], a list of template ids
                params['apix'], desired pixel size
                params['rundir'], output directory
                image processing params
        Processing:
                Copies, scales, and filters templates
        Outputs:
                params['templatelist'], a list of template file basenames
        """

    apDisplay.printMsg("getting templates")

    if not params['templateIds']:
        apDisplay.printError("No template ids were specified")

    params['templatelist'] = []  #list of scaled files
    for i, templateid in enumerate(params['templateIds']):
        index = i + 1
        #print templateid
        templateid = int(templateid)
        if templateid < 0:
            continue

        #QUERY DB FOR TEMPLATE INFO
        templatedata = appiondata.ApTemplateImageData.direct_query(
            abs(templateid))
        if not (templatedata):
            apDisplay.printError("Template Id " + str(templateid) +
                                 " was not found in database.")

        #COPY THE FILE OVER
        origtemplatepath = os.path.join(templatedata['path']['path'],
                                        templatedata['templatename'])
        if not os.path.isfile(origtemplatepath):
            apDisplay.printError("Template file not found: " +
                                 origtemplatepath)
        apDisplay.printMsg("getting template: " + origtemplatepath)
        copytemplatepath = os.path.join(params['rundir'],
                                        "origTemplate" + str(index) + ".mrc")
        scaletemplatepath = os.path.join(
            params['rundir'], "scaledTemplate" + str(index) + ".mrc")
        filtertemplatepath = os.path.join(
            params['rundir'], "filterTemplate" + str(index) + ".mrc")
        #masktemplatepath = os.path.join(params['rundir'], "maskTemplate"+str(index)+".mrc")
        shutil.copyfile(origtemplatepath, copytemplatepath)

        #RESCALE THE TEMPLATE
        templatearray = apImage.mrcToArray(copytemplatepath)
        #scale to correct apix
        scalefactor = templatedata['apix'] / params['apix']
        if abs(scalefactor - 1.0) > 0.01:
            apDisplay.printMsg("rescaling template " + str(index) + ": " +
                               str(templatedata['apix']) + "->" +
                               str(params['apix']))
        templatearray = scaleTemplate(templatearray, scalefactor)
        apImage.arrayToMrc(templatearray, scaletemplatepath, msg=False)
        #bin and filter
        templatearray = apImage.preProcessImage(templatearray,
                                                params=params,
                                                highpass=0,
                                                planeReg=False,
                                                invert=False)
        #write to file
        apImage.arrayToMrc(templatearray, filtertemplatepath, msg=False)

        ### MASK THE TEMPLATE AND SAVE
        #mask the template, visual purposes only
        #maskrad = params['diam']/params['apix']/params['bin']/2.0
        #maskarray =
        #apImage.arrayToMrc(templatearray, masktemplatepath, msg=False)

        #ADD TO TEMPLATE LIST
        params['templatelist'].append(os.path.basename(filtertemplatepath))

        ### ADD MIRROR IF REQUESTED
        if 'templatemirrors' in params and params['templatemirrors'] is True:
            mirrortemplatepath = os.path.join(
                params['rundir'], "mirrorTemplate" + str(index) + ".mrc")
            mirrorarray = numpy.fliplr(templatearray)
            apImage.arrayToMrc(mirrorarray, mirrortemplatepath, msg=False)
            params['templatelist'].append(os.path.basename(mirrortemplatepath))

    #FINISH LOOP OVER template ids
    #Set the apix
    params['templateapix'] = params['apix']
    apDisplay.printMsg("scaled & filtered " +
                       str(len(params['templatelist'])) + " file(s)")

    return params['templatelist']
Ejemplo n.º 15
0
def runFindEM(imgdict, params, thread=False):
	"""
	runs a separate thread of findem.exe for each template
	to get cross-correlation maps
	"""

	### check image
	processAndSaveImage(imgdict, params)
	dwnimgname = imgdict['filename']+".dwn.mrc"
	if not os.path.isfile(dwnimgname):
		apDisplay.printError("cound not find image to process: "+dwnimgname)
	
	### FindEM crashes when an input image is longer than 76 characters
	if len(dwnimgname) > 76:
		randlink = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in range(10))
		randlink+= '.mrc'
		os.symlink(dwnimgname, randlink)

	### check template
	if len(params['templatelist']) < 1:
		apDisplay.printError("templatelist == 0; there are no templates")

	joblist = []
	ccmapfilelist = []

#	For FindEM2
#	### generate circular mask for FindEM2
#	apDisplay.printMsg("creating mask file for template matching")
#	img = apImage.mrcToArray(params['templatelist'][0])
#	circlemask = 1 - imagefun.filled_circle(img.shape,img.shape[0]/2*0.95)
#	apImage.arrayToMrc(circlemask,"tmpmask.mrc")
#	del img,circlemask
	
	workimg = randlink if len(dwnimgname) > 76 else dwnimgname

	### create list of inputs for findem threads
	feeds = []
	for i,templatename in enumerate(params['templatelist']):
		classavg = i + 1

		# OUTPUT FILE NAME
		numstr = "%03d" % classavg
		ccmapfile="cccmaxmap"+numstr+".mrc"
		apFile.removeFile(ccmapfile)

		feeds.append(findEMString(classavg, templatename, workimg, ccmapfile, params))

		#STORE OUTPUT FILE
		ccmapfilelist.append(ccmapfile)

	### launch findem threads
	t0 = time.time()
	findemexe = getFindEMPath()
	pool = multiprocessing.Pool(processes=params['nproc'])
	runner = findemrunner(findemexe,len(params['templatelist']))
	for i,feed in enumerate(feeds):
		pool.apply_async(runner, (i,feed))
	pool.close()
	pool.join()

	apDisplay.printMsg("\nFindEM finished in "+apDisplay.timeString(time.time()-t0)+"\n")
#	For FindEM2
#	os.remove("tmpmask.mrc")

	### READ OUTPUT FILES
	ccmaplist = []
	for ccmapfile in ccmapfilelist:
		if not os.path.isfile(ccmapfile):
			apDisplay.printError("findem.exe did not run or crashed.\n")
		ccmaxmap = apImage.mrcToArray(ccmapfile)
		ccmaplist.append(ccmaxmap)

	return ccmaplist
Ejemplo n.º 16
0
def runSpectralFindEM(imgdict, params, thread=False):
	"""
	runs a separate thread of findem.exe for each template
	to get cross-correlation maps
	"""
	imgname = imgdict['filename']
	dwnimgname = os.path.splitext(imgname)[0]+".dwn.mrc"
	os.chdir(params['rundir'])
	joblist = []
	ccmaplist = []

	processAndSaveImage(imgdict, params)
	### FindEM crashes when an input image is longer than 76 characters
	if len(dwnimgname) > 76:
		randlink = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in range(10))
		randlink+= '.mrc'
		os.symlink(dwnimgname, randlink)

	if len(params['templatelist']) < 1:
		apDisplay.printError("templatelist == 0; there are no templates")

	for i,templatename in enumerate(params['templatelist']):
		classavg = i + 1

		#First round: normal findem: template x image
		numstr = "%03d" % (100+classavg)
		ccmapfile1 = "cccmaxmap"+numstr+".mrc"
		apFile.removeFile(ccmapfile1)
		params["startang"+str(100+classavg)] = params["startang"+str(classavg)]
		params["endang"+str(100+classavg)] = params["endang"+str(classavg)]
		params["incrang"+str(100+classavg)] = params["incrang"+str(classavg)]
		if len(dwnimgname) > 76:
			feed = findEMString(100+classavg, templatename, randlink, ccmapfile1, params)
		else:
			feed = findEMString(100+classavg, templatename, dwnimgname, ccmapfile1, params)
		sys.exit()
		execFindEM(feed)

		#Second round: template x template
		numstr = "%03d" % (200+classavg)
		ccmapfile2 = "cccmaxmap"+numstr+".mrc"
		apFile.removeFile(ccmapfile2)
		params["startang"+str(200+classavg)] = params["startang"+str(classavg)]
		params["endang"+str(200+classavg)] = params["endang"+str(classavg)]
		params["incrang"+str(200+classavg)] = params["incrang"+str(classavg)]
		feed = findEMString(200+classavg, templatename, templatename, ccmapfile2, params)
		execFindEM(feed)

		#Final round: (template x template) x (template x image) = spectral
		numstr = "%03d" % (300+classavg)
		ccmapfile3 = "cccmaxmap"+numstr+".mrc"
		apFile.removeFile(ccmapfile3)
		params["startang"+str(300+classavg)] = 0
		params["endang"+str(300+classavg)] = 10
		params["incrang"+str(300+classavg)] = 20
		feed = findEMString(300+classavg, ccmapfile2, ccmapfile1, ccmapfile3, params)
		execFindEM(feed)

		#READ OUTPUT FILE
		if not os.path.isfile(ccmapfile3):
			apDisplay.printError("findem.exe did not run or crashed.\n"+
				"Did you source useappion.sh?")
		else:
			ccmaxmap = apImage.mrcToArray(ccmapfile3)
			ccmaplist.append(ccmaxmap)

	return ccmaplist
Ejemplo n.º 17
0
    def processImage(self, imgdata):
        self.ctfvalues = {}
        bestdef = ctfdb.getBestCtfByResolution(imgdata, msg=True)
        apix = apDatabase.getPixelSize(imgdata)
        if (not (self.params['onepass'] and self.params['zeropass'])):
            maskhighpass = False
            ace2inputpath = os.path.join(imgdata['session']['image path'],
                                         imgdata['filename'] + ".mrc")
        else:
            maskhighpass = True
            filterimg = apImage.maskHighPassFilter(imgdata['image'], apix, 1,
                                                   self.params['zeropass'],
                                                   self.params['onepass'])
            ace2inputpath = os.path.join(self.params['rundir'],
                                         imgdata['filename'] + ".mrc")
            mrc.write(filterimg, ace2inputpath)

        # make sure that the image is a square
        dimx = imgdata['camera']['dimension']['x']
        dimy = imgdata['camera']['dimension']['y']
        if dimx != dimy:
            dims = [dimx, dimy]
            dims.sort()
            apDisplay.printMsg("resizing image: %ix%i to %ix%i" %
                               (dimx, dimy, dims[0], dims[0]))
            mrcarray = apImage.mrcToArray(ace2inputpath, msg=False)
            clippedmrc = apImage.frame_cut(mrcarray, [dims[0], dims[0]])
            ace2inputpath = os.path.join(self.params['rundir'],
                                         imgdata['filename'] + ".mrc")
            apImage.arrayToMrc(clippedmrc, ace2inputpath, msg=False)

        ### pad out image to speed up FFT calculations for non-standard image sizes
        print "checking prime factor"
        if primefactor.isGoodStack(dimx) is False:
            goodsize = primefactor.getNextEvenPrime(dimx)
            factor = float(goodsize) / float(dimx)
            apDisplay.printMsg("padding image:  %ix%i to %ix%i" %
                               (dimx, dimy, dimx * factor, dimy * factor))
            mrcarray = apImage.mrcToArray(ace2inputpath, msg=False)
            #			paddedmrc = imagefun.pad(mrcarray, None, factor)
            paddedmrc = apImage.frame_constant(mrcarray,
                                               (dimx * factor, dimy * factor),
                                               cval=mrcarray.mean())
            ace2inputpath = os.path.join(self.params['rundir'],
                                         imgdata['filename'] + ".mrc")
            apImage.arrayToMrc(paddedmrc, ace2inputpath, msg=False)

        inputparams = {
            'input': ace2inputpath,
            'cs': self.params['cs'],
            'kv': imgdata['scope']['high tension'] / 1000.0,
            'apix': apix,
            'binby': self.params['bin'],
        }

        ### make standard input for ACE 2
        apDisplay.printMsg("Ace2 executable: " + self.ace2exe)
        commandline = (self.ace2exe + " -i " + str(inputparams['input']) +
                       " -b " + str(inputparams['binby']) + " -c " +
                       str(inputparams['cs']) + " -k " +
                       str(inputparams['kv']) + " -a " +
                       str(inputparams['apix']) + " -e " +
                       str(self.params['edge_b']) + "," +
                       str(self.params['edge_t']) + " -r " +
                       str(self.params['rotblur']) + "\n")

        ### run ace2
        apDisplay.printMsg("running ace2 at " + time.asctime())
        apDisplay.printColor(commandline, "purple")

        t0 = time.time()

        if self.params['verbose'] is True:
            ace2proc = subprocess.Popen(commandline, shell=True)
        else:
            aceoutf = open("ace2.out", "a")
            aceerrf = open("ace2.err", "a")
            ace2proc = subprocess.Popen(commandline,
                                        shell=True,
                                        stderr=aceerrf,
                                        stdout=aceoutf)

        ace2proc.wait()

        ### check if ace2 worked
        basename = os.path.basename(ace2inputpath)
        imagelog = basename + ".ctf.txt"
        if not os.path.isfile(imagelog) and self.stats['count'] <= 1:
            ### ace2 always crashes on first image??? .fft_wisdom file??
            time.sleep(1)

            if self.params['verbose'] is True:
                ace2proc = subprocess.Popen(commandline, shell=True)
            else:
                aceoutf = open("ace2.out", "a")
                aceerrf = open("ace2.err", "a")
                ace2proc = subprocess.Popen(commandline,
                                            shell=True,
                                            stderr=aceerrf,
                                            stdout=aceoutf)

            ace2proc.wait()

        if self.params['verbose'] is False:
            aceoutf.close()
            aceerrf.close()
        if not os.path.isfile(imagelog):
            lddcmd = "ldd " + self.ace2exe
            lddproc = subprocess.Popen(lddcmd, shell=True)
            lddproc.wait()
            apDisplay.printError("ace2 did not run")
        apDisplay.printMsg("ace2 completed in " +
                           apDisplay.timeString(time.time() - t0))

        ### parse log file
        self.ctfvalues = {
            'cs': self.params['cs'],
            'volts': imgdata['scope']['high tension'],
        }
        logf = open(imagelog, "r")
        apDisplay.printMsg("reading log file %s" % (imagelog))
        for line in logf:
            sline = line.strip()
            if re.search("^Final Defocus: ", sline):
                ### old ACE2
                apDisplay.printError(
                    "This old version of ACE2 has a bug in the astigmastism, please upgrade ACE2 now"
                )
                #parts = sline.split()
                #self.ctfvalues['defocus1'] = float(parts[2])
                #self.ctfvalues['defocus2'] = float(parts[3])
                ### convert to degrees
                #self.ctfvalues['angle_astigmatism'] = math.degrees(float(parts[4]))
            elif re.search("^Final Defocus \(m,m,deg\):", sline):
                ### new ACE2
                apDisplay.printMsg("Reading new ACE2 defocus")
                parts = sline.split()
                #print parts
                self.ctfvalues['defocus1'] = float(parts[3])
                self.ctfvalues['defocus2'] = float(parts[4])
                # ace2 defines negative angle from +x toward +y
                self.ctfvalues['angle_astigmatism'] = -float(parts[5])
            elif re.search("^Amplitude Contrast:", sline):
                parts = sline.split()
                self.ctfvalues['amplitude_contrast'] = float(parts[2])
            elif re.search("^Confidence:", sline):
                parts = sline.split()
                self.ctfvalues['confidence'] = float(parts[1])
                self.ctfvalues['confidence_d'] = float(parts[1])
        logf.close()

        ### summary stats
        apDisplay.printMsg("============")
        avgdf = (self.ctfvalues['defocus1'] + self.ctfvalues['defocus2']) / 2.0
        ampconst = 100.0 * self.ctfvalues['amplitude_contrast']
        pererror = 100.0 * (self.ctfvalues['defocus1'] -
                            self.ctfvalues['defocus2']) / avgdf
        apDisplay.printMsg(
            "Defocus: %.3f x %.3f um (%.2f percent astigmatism)" %
            (self.ctfvalues['defocus1'] * 1.0e6,
             self.ctfvalues['defocus2'] * 1.0e6, pererror))
        apDisplay.printMsg("Angle astigmatism: %.2f degrees" %
                           (self.ctfvalues['angle_astigmatism']))
        apDisplay.printMsg("Amplitude contrast: %.2f percent" % (ampconst))

        apDisplay.printColor(
            "Final confidence: %.3f" % (self.ctfvalues['confidence']), 'cyan')

        ### double check that the values are reasonable
        if avgdf > self.params['maxdefocus'] or avgdf < self.params[
                'mindefocus']:
            apDisplay.printWarning(
                "bad defocus estimate, not committing values to database")
            self.badprocess = True

        if ampconst < 0.0 or ampconst > 80.0:
            apDisplay.printWarning(
                "bad amplitude contrast, not committing values to database")
            self.badprocess = True

        if self.ctfvalues['confidence'] < 0.2:
            apDisplay.printWarning(
                "bad confidence value, not committing values to database")
            self.badprocess = True

        ## create power spectra jpeg
        mrcfile = imgdata['filename'] + ".mrc.edge.mrc"
        if os.path.isfile(mrcfile):
            jpegfile = os.path.join(
                self.powerspecdir,
                apDisplay.short(imgdata['filename']) + ".jpg")
            ps = apImage.mrcToArray(mrcfile, msg=False)
            c = numpy.array(ps.shape) / 2.0
            ps[c[0] - 0, c[1] - 0] = ps.mean()
            ps[c[0] - 1, c[1] - 0] = ps.mean()
            ps[c[0] - 0, c[1] - 1] = ps.mean()
            ps[c[0] - 1, c[1] - 1] = ps.mean()
            #print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
            ps = numpy.log(ps + 1.0)
            ps = (ps - ps.mean()) / ps.std()
            cutoff = -2.0 * ps.min()
            ps = numpy.where(ps > cutoff, cutoff, ps)
            cutoff = ps.mean()
            ps = numpy.where(ps < cutoff, cutoff, ps)
            #print "%.3f -- %.3f -- %.3f"%(ps.min(), ps.mean(), ps.max())
            apImage.arrayToJpeg(ps, jpegfile, msg=False)
            apFile.removeFile(mrcfile)
            self.ctfvalues['graph3'] = jpegfile
        otherfiles = glob.glob(imgdata['filename'] + ".*.txt")

        ### remove extra debugging files
        for filename in otherfiles:
            if filename[-9:] == ".norm.txt":
                continue
            elif filename[-8:] == ".ctf.txt":
                continue
            else:
                apFile.removeFile(filename)

        if maskhighpass and os.path.isfile(ace2inputpath):
            apFile.removeFile(ace2inputpath)

        return
Ejemplo n.º 18
0
	def processImage(self, imgdata):
		"""
		time ./ctffind3.exe << eof
		Input image file name                  [input.mrc] : 15aug13neil2_14jul14d_05sq_012hl_02ed-a.mrc
		Output diagnostic filename
		[diagnostic_output.mrc]                            : 15aug13neil2_14jul14d_05sq_012hl_02ed-a-pow.mrc
		Pixel size                                   [1.0] : 2.7
		Acceleration voltage                       [300.0] : 300 
		Spherical aberration                         [2.7] : 2.7
		Amplitude contrast                          [0.07] : 0.07
		Size of power spectrum to compute            [512] : 512
		Minimum resolution                          [30.0] : 20
		Maximum resolution                           [5.0] : 5
		Minimum defocus                           [5000.0] : 
		Maximum defocus                          [50000.0] : 
		Defocus search step                        [500.0] : 
		Expected (tolerated) astigmatism           [100.0] : 
		Find additional phase shift?                  [no] : 
		"""
		paramInputOrder = ['input', 'output', 'apix', 'kv', 'cs', 'ampcontrast', 'fieldsize',
			'resmin', 'resmax', 'defmin', 'defmax', 'defstep', 'expect_astig', 'phase', 'newline',]

		#get Defocus in Angstroms
		self.ctfvalues = {}
		nominal = abs(imgdata['scope']['defocus']*-1.0e10)
		ctfvalue = ctfdb.getBestCtfByResolution(imgdata)
		if ctfvalue is not None:
			"""
			## CTFFIND V3.5 (7-March-2012) prefers the smaller of the two values for astigmatic images
			I found that say you have an image with 1.1um and 1.5um defocus astigmatism. If you give 
			CTFFIND the average value of 1.3um for the defocus and 0.4um astig (dast) then it will 
			try to fit 1.3um and 1.8um, so you need to give it the minimum value (1.1um) for it to 
			fit 1.1um and 1.5um.
			"""
			bestdef = min(ctfvalue['defocus1'],ctfvalue['defocus2'])*1.0e10
		else:
			bestdef = nominal
		if ctfvalue is not None and self.params['bestdb'] is True:
			bestampcontrast = round(ctfvalue['amplitude_contrast'],3)
			beststigdiff = round(abs(ctfvalue['defocus1'] - ctfvalue['defocus2'])*1e10,1)
		else:
			bestampcontrast = self.params['ampcontrast']
			beststigdiff = self.params['dast']*10000.

		if ctfvalue is not None and self.params['bestdb'] is True:
			### set res max from resolution_80_percent
			gmean = (ctfvalue['resolution_80_percent']*ctfvalue['resolution_50_percent']*self.params['resmax'])**(1/3.)
			if gmean < self.params['resmin']*0.9:
				# replace only if valid Issue #3291
				self.params['resmax'] = round(gmean,2)
				apDisplay.printColor("Setting resmax to the geometric mean of resolution values", "purple")

		# dstep is the physical detector pixel size
		apix = apDatabase.getPixelSize(imgdata)
		# inputparams defocii and astig are in Angstroms
		inputparams = {
			'orig': os.path.join(imgdata['session']['image path'], imgdata['filename']+".mrc"),
			'input': apDisplay.short(imgdata['filename'])+".mrc",
			'output': apDisplay.short(imgdata['filename'])+"-pow.mrc",

			'apix': apix,
			'kv': imgdata['scope']['high tension']/1000.0,			
			'cs': self.params['cs'],
			'ampcontrast': bestampcontrast,
			'fieldsize': self.params['fieldsize'],
			'resmin': self.params['resmin'],
			'resmax': self.params['resmax'],
			
			'defstep': self.params['defstep']*10000., #round(defocus/32.0, 1),
			'expect_astig': beststigdiff,
			'phase': 'no', # this is a secondary amp contrast term for phase plates
			'newline': '\n',
		}
		defrange = self.params['defstep'] * self.params['numstep'] * 1e4 ## do 25 steps in either direction # in angstrum
		inputparams['defmin']= round(bestdef-defrange, 1) #in angstrom 
		if inputparams['defmin'] < 0:
			apDisplay.printWarning("Defocus minimum is less than zero")
			inputparams['defmin'] = inputparams['defstep']
		inputparams['defmax']= round(bestdef+defrange, 1) #in angstrom
		apDisplay.printColor("Defocus search range: %d A to %d A (%.2f to %.2f um)"
			%(inputparams['defmin'], inputparams['defmax'], 
			inputparams['defmin']*1e-4, inputparams['defmax']*1e-4), "cyan")

		### secondary lock check right before it starts on the real part
		if self.params['parallel'] and os.path.isfile(apDisplay.short(imgdata['filename'])+".mrc"):
			# This is a secondary image lock check, checking the first output of the process.
			# It alone is not good enough
			apDisplay.printWarning('Some other parallel process is working on the same image. Skipping')
			return
		### create local link to image
		if not os.path.exists(inputparams['input']):
			os.symlink(inputparams['orig'], inputparams['input'])

		if os.path.isfile(inputparams['output']):
			# program crashes if this file exists
			apFile.removeFile(inputparams['output'])

		t0 = time.time()
		apDisplay.printMsg("running ctf estimation at "+time.asctime())
		for paramName in paramInputOrder:
			apDisplay.printColor("%s = %s"%(paramName,inputparams[paramName]),"magenta")
		print ""
		ctfprogproc = subprocess.Popen(self.ctfprgmexe, shell=True, stdin=subprocess.PIPE,)		
		apDisplay.printColor(self.ctfprgmexe, "magenta")
		for paramName in paramInputOrder:
			apDisplay.printColor(inputparams[paramName],"magenta")
			ctfprogproc.stdin.write(str(inputparams[paramName])+'\n')
		ctfprogproc.communicate()
		tdiff = time.time()-t0
		apDisplay.printMsg("ctf estimation completed in "+apDisplay.timeString(tdiff))
		if tdiff < 1.0:
			apDisplay.printError("Failed to run CTFFIND4 program...")

		### cannot run ctffind_plot_results.sh on CentOS 6
		# This script requires gnuplot version >= 4.6, but you have version 4.2

		### parse ctf estimation output
		self.ctfvalues = {}
		ctfproglog = apDisplay.short(imgdata['filename'])+"-pow.txt"		
		apDisplay.printMsg("reading %s"%(ctfproglog))
		logf = open(ctfproglog, "r")

		for line in logf:
			sline = line.strip()
			if sline.startswith('#'):
				continue
			bits = sline.split()
			self.ctfvalues = {
				'imagenum': int(float(bits[0])),
				'defocus2':	float(bits[1])*1e-10,
				'defocus1':	float(bits[2])*1e-10,
				'angle_astigmatism':	float(bits[3]),
				'extra_phase':	float(bits[4]),
				'amplitude_contrast': inputparams['ampcontrast'],
				'cross_correlation':	float(bits[5]),
				'ctffind4_resolution':	float(bits[6]),
				'defocusinit':	bestdef*1e-10,
				'cs': self.params['cs'],
				'volts': imgdata['scope']['high tension'],
				'confidence': float(bits[5]),
				'confidence_d': round(math.sqrt(abs(float(bits[5]))), 5)
			}

		print self.ctfvalues

		#convert powerspectra to JPEG
		outputjpgbase = apDisplay.short(imgdata['filename'])+"-pow.jpg"
		self.lastjpg = outputjpgbase
		outputjpg = os.path.join(self.powerspecdir, self.lastjpg)
		powspec = apImage.mrcToArray(inputparams['output'])
		apImage.arrayToJpeg(powspec, outputjpg)
		shutil.move(inputparams['output'], os.path.join(self.powerspecdir, inputparams['output']))
		self.ctfvalues['graph1'] = outputjpg

		#apFile.removeFile(inputparams['input'])

		return
Ejemplo n.º 19
0
	def tiltPhaseFlipParticles(self, imgdata, imgstackfile, partdatas):
		apDisplay.printMsg("Applying per-particle CTF")
		ctfvalue = ctfdb.getBestTiltCtfValueForImage(imgdata)
		if ctfvalue is None:
			apDisplay.printError("Failed to get ctf parameters")
		apix = apDatabase.getPixelSize(imgdata)
		ctfimgstackfile = os.path.join(self.params['rundir'], apDisplay.short(imgdata['filename'])+"-ctf.hed")
		ampconst = ctfvalue['amplitude_contrast']

		### calculate defocus at given position
		dimx = imgdata['camera']['dimension']['x']
		dimy = imgdata['camera']['dimension']['y']
		CX = dimx/2
		CY = dimy/2

		if ctfvalue['tilt_axis_angle'] is not None:
			N1 = -1.0 * math.sin( math.radians(ctfvalue['tilt_axis_angle']) )
			N2 = math.cos( math.radians(ctfvalue['tilt_axis_angle']) )
		else:
			N1 = 0.0
			N2 = 1.0
		PSIZE = apix

		### High tension on CM is given in kv instead of v so do not divide by 1000 in that case
		if imgdata['scope']['tem']['name'] == "CM":
			voltage = imgdata['scope']['high tension']
		else:
			voltage = (imgdata['scope']['high tension'])/1000

		# find cs
		cs = self.getCS(ctfvalue)

		imagicdata = apImagicFile.readImagic(imgstackfile, msg=False)
		ctfpartstack = []
		for i in range(len(partdatas)):
			partdata = partdatas[i]
			prepartarray = imagicdata['images'][i]
			prepartmrc = "rawpart.dwn.mrc"
			postpartmrc = "ctfpart.dwn.mrc"
			apImage.arrayToMrc(prepartarray, prepartmrc, msg = False)

			### calculate ctf based on position
			NX = partdata['xcoord']
			NY = dimy-partdata['ycoord'] # reverse due to boxer flip

			DX = CX - NX
			DY = CY - NY
			DF = (N1*DX + N2*DY) * PSIZE * math.tan( math.radians(ctfvalue['tilt_angle']) )
			### defocus is in Angstroms
			DFL1 = abs(ctfvalue['defocus1'])*1.0e10 + DF
			DFL2 = abs(ctfvalue['defocus2'])*1.0e10 + DF
			DF_final = (DFL1+DFL2)/2.0

			### convert defocus to microns
			defocus = DF_final*-1.0e-4

			### check to make sure defocus is a reasonable value for applyctf
			self.checkDefocus(defocus, apDisplay.short(imgdata['filename']))

			parmstr = ("parm=%f,200,1,%.3f,0,17.4,9,1.53,%i,%.1f,%f"
				%(defocus, ampconst, voltage, cs, apix))
			emancmd = ("applyctf %s %s %s setparm flipphase" % (prepartmrc, postpartmrc, parmstr))
			apEMAN.executeEmanCmd(emancmd, showcmd = False)

			ctfpartarray = apImage.mrcToArray(postpartmrc, msg=False)
			ctfpartstack.append(ctfpartarray)

		apImagicFile.writeImagic(ctfpartstack, ctfimgstackfile)
		return ctfimgstackfile
Ejemplo n.º 20
0
def runFindEM(imgdict, params, thread=False):
    """
        runs a separate thread of findem.exe for each template
        to get cross-correlation maps
        """
    ### check image
    processAndSaveImage(imgdict, params)
    dwnimgname = imgdict['filename'] + ".dwn.mrc"
    if not os.path.isfile(dwnimgname):
        apDisplay.printError("cound not find image to process: " + dwnimgname)

    ### FindEM crashes when an input image is longer than 76 characters
    if len(dwnimgname) > 76:
        randlink = ''.join(
            random.choice(string.ascii_uppercase + string.digits)
            for x in range(10))
        randlink += '.mrc'
        os.symlink(dwnimgname, randlink)

    ### check template
    if len(params['templatelist']) < 1:
        apDisplay.printError("templatelist == 0; there are no templates")

    joblist = []
    ccmapfilelist = []

    t0 = time.time()
    for i, templatename in enumerate(params['templatelist']):
        classavg = i + 1

        #DETERMINE OUTPUT FILE NAME
        #CHANGE THIS TO BE 00%i in future
        numstr = "%03d" % classavg
        #numstr = str(classavg%10)+"00"
        ccmapfile = "cccmaxmap" + numstr + ".mrc"
        apFile.removeFile(ccmapfile)

        #GET FINDEM RUN COMMANDS
        if len(dwnimgname) > 76:
            feed = findEMString(classavg, templatename, randlink, ccmapfile,
                                params)
        else:
            feed = findEMString(classavg, templatename, dwnimgname, ccmapfile,
                                params)

        #RUN THE PROGRAM
        if thread is True:
            job = findemjob(feed)
            joblist.append(job)
            job.start()
        else:
            execFindEM(feed)

        #STORE OUTPUT FILE
        ccmapfilelist.append(ccmapfile)

    # get findemexe name
    findemexepath = getFindEMPath()
    findemexename = os.path.basename(findemexepath)

    ### WAIT FOR THREADS TO COMPLETE
    if thread is True:
        apDisplay.printMsg("waiting for " + str(len(joblist)) +
                           " findem threads to complete")
        numtimes = 0
        for i, job in enumerate(joblist):
            while job.isAlive():
                sys.stderr.write(".")
                time.sleep(1.5)
                numtimes += 1
                if numtimes == 40:
                    pidof = "pidof %s" % findemexename
                    pids = subprocess.Popen(
                        pidof, shell=True,
                        stdout=subprocess.PIPE).stdout.read()
                    pids = pids.split()
                    for pid in pids:
                        os.kill(int(float(pid)), 9)

                    apDisplay.printWarning(
                        "\nFindEM likely stalled.  Re-running the template correlator command\n"
                    )
                    runFindEM(imgdict, params, thread)

        sys.stderr.write("\n")
    apDisplay.printMsg("FindEM finished in " +
                       apDisplay.timeString(time.time() - t0))

    ### READ OUTPUT FILES
    ccmaplist = []
    for ccmapfile in ccmapfilelist:
        if not os.path.isfile(ccmapfile):
            apDisplay.printError("findem.exe did not run or crashed.\n")
        ccmaxmap = apImage.mrcToArray(ccmapfile)
        ccmaplist.append(ccmaxmap)

    return ccmaplist
    def processImage(self, imgdata):
        """
                time ./ctffind3.exe << eof
                micrograph.mrc
                montage.pow
                2.0, 200.0, 0.07, 60000, 7.0, 2 #! CS[mm], HT[kV], AmpCnst, XMAG, DStep[um], PAve
                128, 200.0, 8.0, 5000.0, 40000.0, 5000.0 #! Box, ResMin[A], ResMax[A], dFMin[A], dFMax[A], FStep
                eof

                CARD 1: Input file name for image
                CARD 2: Output file name to check result
                CARD 3: CS[mm], HT[kV], AmpCnst, XMAG, DStep[um],PAve
                CARD 4: Box, ResMin[A], ResMax[A], dFMin[A], dFMax[A], FStep,  dAst[A]
                CTFTILT also asks for TiltA[deg], TiltR[deg] at CARD4

                The output image file to check the result of the fitting
                shows the filtered average power spectrum of the input
                image in one half, and the fitted CTF (squared) in the
                other half. The two halves should agree very well for a
                successful fit.

                CS: Spherical aberration coefficient of the objective in mm
                HT: Electron beam voltage in kV
                AmpCnst: Amount of amplitude contrast (fraction). For ice
                        images 0.07, for negative stain about 0.15.
                XMAG: Magnification of original image
                DStep: Pixel size on scanner in microns, or apix*mag/10000
                PAve: Pixel averaging (PAve x PAve) for input image

                Box: Tile size. The program divides the image into square
                        tiles and calculates the average power spectrum. Tiles
                        with a significantly higher or lower variance are
                        excluded; these are parts of the image which are unlikely
                        to contain useful information (beam edge, film number
                        etc). IMPORTANT: Box must have a even pixel dimensions.
                ResMin: Low resolution end of data to be fitted.
                ResMaX: High resolution end of data to be fitted.
                dFMin: Starting defocus value for grid search in Angstrom.
                        Positive values represent an underfocus. The program
                        performs a systematic grid search of defocus values
                        and astigmatism before fitting a CTF to machine
                        precision.
                dFMax: End defocus value for grid search in Angstrom.
                FStep: Step width for grid search in Angstrom.
                dAst: An additional parameter, dAst, was added to CARD 4 to restrain 
                        the amount of astigmatism in the CTF fit. This makes the 
                        fitting procedure more robust, especially in cases where 
                        the Thon rings are not easily visible.
                TiltA: guessed tilt angle
                TiltR: angular range for initial coarse search 
                """

        #get Defocus in Angstroms
        self.ctfvalues = {}
        nominal = abs(imgdata['scope']['defocus'] * -1.0e10)
        ctfvalue = ctfdb.getBestCtfByResolution(imgdata)
        if ctfvalue is not None:
            bestdef = abs(ctfvalue['defocus1'] +
                          ctfvalue['defocus2']) / 2.0 * 1.0e10
        else:
            bestdef = nominal
        if ctfvalue is not None and self.params['bestdb'] is True:
            bestampcontrast = ctfvalue['amplitude_contrast']
            beststigdiff = abs(ctfvalue['defocus1'] -
                               ctfvalue['defocus2']) * 1e10
        else:
            bestampcontrast = self.params['amp' + self.params['medium']]
            beststigdiff = self.params['dast']
        # dstep is the physical detector pixel size
        dstep = None
        if 'camera' in imgdata and imgdata['camera'] and imgdata['camera'][
                'pixel size']:
            dstep = imgdata['camera']['pixel size']['x']
        if dstep is None:
            dstep = apDatabase.getPixelSize(
                imgdata) * imgdata['scope']['magnification'] / 10000.0
            dstep /= 1e6
        dstep = float(dstep)
        mpixelsize = apDatabase.getPixelSize(imgdata) * 1e-10
        xmag = dstep / mpixelsize
        apDisplay.printMsg("Xmag=%d, dstep=%.2e, mpix=%.2e" %
                           (xmag, dstep, mpixelsize))
        inputparams = {
            'orig':
            os.path.join(imgdata['session']['image path'],
                         imgdata['filename'] + ".mrc"),
            'input':
            apDisplay.short(imgdata['filename']) + ".mrc",
            'output':
            apDisplay.short(imgdata['filename']) + "-pow.mrc",
            'cs':
            self.params['cs'],
            'kv':
            imgdata['scope']['high tension'] / 1000.0,
            'ampcnst':
            bestampcontrast,
            'xmag':
            xmag,
            'dstep':
            dstep * 1e6,
            'pixavg':
            self.params['bin'],
            'box':
            self.params['fieldsize'],
            'resmin':
            self.params['resmin'],
            'resmax':
            self.params['resmax'],
            'defstep':
            self.params['defstep'],  #round(defocus/32.0, 1),
            'dast':
            beststigdiff,
        }
        defrange = self.params['defstep'] * self.params[
            'numstep']  ## do 25 steps in either direction
        inputparams['defmin'] = round(bestdef - defrange, 1)  #in meters
        if inputparams['defmin'] < 0:
            apDisplay.printWarning("Defocus minimum is less than zero")
            inputparams['defmin'] = inputparams['defstep']
        inputparams['defmax'] = round(bestdef + defrange, 1)  #in meters
        apDisplay.printColor(
            "Defocus search range: %d A to %d A (%.2f to %.2f um)" %
            (inputparams['defmin'], inputparams['defmax'],
             inputparams['defmin'] * 1e-4, inputparams['defmax'] * 1e-4),
            "cyan")
        ### create local link to image
        if not os.path.exists(inputparams['input']):
            cmd = "ln -s " + inputparams['orig'] + " " + inputparams[
                'input'] + "\n"
            proc = subprocess.Popen(cmd, shell=True)
            proc.wait()

        ### make standard input for ctf estimation
        line1cmd = inputparams['input'] + "\n"
        line2cmd = inputparams['output'] + "\n"
        line3cmd = (str(inputparams['cs']) + "," + str(inputparams['kv']) +
                    "," + str(inputparams['ampcnst']) + "," +
                    str(inputparams['xmag']) + "," +
                    str(inputparams['dstep']) + "," +
                    str(inputparams['pixavg']) + "\n")
        line4cmd = (str(inputparams['box']) + "," +
                    str(inputparams['resmin']) + "," +
                    str(inputparams['resmax']) + "," +
                    str(inputparams['defmin']) + "," +
                    str(inputparams['defmax']) + "," +
                    str(inputparams['defstep']) + "," +
                    str(inputparams['dast']))

        ### additional ctftilt parameters
        if self.params['ctftilt'] is True:
            tiltang = apDatabase.getTiltAngleDeg(imgdata)
            line4cmd += ("," + str(tiltang) + ",10")
        line4cmd += "\n"

        if os.path.isfile(inputparams['output']):
            # program crashes if this file exists
            apFile.removeFile(inputparams['output'])

        t0 = time.time()
        apDisplay.printMsg("running ctf estimation at " + time.asctime())
        ctfproglog = os.path.join(
            self.logdir,
            os.path.splitext(imgdata['filename'])[0] + "-ctfprog.log")
        logf = open(ctfproglog, "w")
        ctfprogproc = subprocess.Popen(self.ctfprgmexe,
                                       shell=True,
                                       stdin=subprocess.PIPE,
                                       stdout=logf)
        apDisplay.printColor(self.ctfprgmexe, "magenta")
        apDisplay.printColor(line1cmd.strip(), "magenta")
        apDisplay.printColor(line2cmd.strip(), "magenta")
        apDisplay.printColor(line3cmd.strip(), "magenta")
        apDisplay.printColor(line4cmd.strip(), "magenta")
        ctfprogproc.stdin.write(line1cmd)
        ctfprogproc.stdin.write(line2cmd)
        ctfprogproc.stdin.write(line3cmd)
        ctfprogproc.stdin.write(line4cmd)
        ctfprogproc.communicate()
        logf.close()

        apDisplay.printMsg("ctf estimation completed in " +
                           apDisplay.timeString(time.time() - t0))

        #apFile.removeFile(inputparams['input'])

        ### parse ctf estimation output
        self.ctfvalues = {}
        logf = open(ctfproglog, "r")

        ## ctffind & ctftilt have diff # values
        numvals = 6
        if self.params['ctftilt'] is True:
            numvals = 8
        for line in logf:
            sline = line.strip()
            if sline[-12:] == "Final Values":
                #print sline
                if '**********' in sline:
                    sline = re.sub('**********', ' **********', sline)
                bits = sline.split()
                if len(bits) != numvals:
                    apDisplay.printError("wrong number of values in " +
                                         str(bits))
                for i, bit in enumerate(bits[0:(numvals - 2)]):
                    bits[i] = float(bit)
                self.ctfvalues = {
                    'defocus1':
                    float(bits[0]) * 1e-10,
                    'defocus2':
                    float(bits[1]) * 1e-10,
                    # WARNING: this is the negative of the direct result
                    'angle_astigmatism':
                    float(bits[2]),
                    'amplitude_contrast':
                    inputparams['ampcnst'],
                    'cross_correlation':
                    float(bits[numvals - 3]),
                    'nominal':
                    nominal * 1e-10,
                    'defocusinit':
                    bestdef * 1e-10,
                    'cs':
                    self.params['cs'],
                    'volts':
                    imgdata['scope']['high tension'],
                    'confidence':
                    float(bits[numvals - 3]),
                    'confidence_d':
                    round(math.sqrt(abs(float(bits[numvals - 3]))), 5)
                }
                if self.params['ctftilt'] is True:
                    self.ctfvalues['tilt_axis_angle'] = float(bits[3])
                    self.ctfvalues['tilt_angle'] = float(bits[4])

        ### write to log file
        f = open("ctfvalues.log", "a")
        f.write("=== " + imgdata['filename'] + " ===\n")
        line1 = ("nominal=%.1e, bestdef=%.1e," %
                 (self.ctfvalues['nominal'], self.ctfvalues['defocusinit']))
        if self.params['ctftilt'] is True:
            self.ctfvalues['origtiltang'] = tiltang
            line1 += " tilt=%.1f," % tiltang
        apDisplay.printMsg(line1)
        f.write(line1)
        line2 = (
            "def_1=%.1e, def_2=%.1e, astig_angle=%.1f, cross_corr=%.3f,\n" %
            (self.ctfvalues['defocus1'], self.ctfvalues['defocus2'],
             self.ctfvalues['angle_astigmatism'],
             self.ctfvalues['cross_correlation']))
        if self.params['ctftilt'] is True:
            line2 += ("tilt_angle=%.1f, tilt_axis_angle=%.1f,\n" %
                      (self.ctfvalues['tilt_angle'],
                       self.ctfvalues['tilt_axis_angle']))
        apDisplay.printMsg(line2)
        f.write(line2)
        f.close()

        #convert powerspectra to JPEG
        outputjpgbase = os.path.basename(
            os.path.splitext(inputparams['output'])[0] + ".jpg")
        self.lastjpg = outputjpgbase
        outputjpg = os.path.join(self.powerspecdir, self.lastjpg)
        powspec = apImage.mrcToArray(inputparams['output'])
        apImage.arrayToJpeg(powspec, outputjpg)
        shutil.move(inputparams['output'],
                    os.path.join(self.powerspecdir, inputparams['output']))
        self.ctfvalues['graph1'] = outputjpg

        #apFile.removeFile(inputparams['input'])

        return
def runFindEM(imgdict, params, thread=False):
        """
        runs a separate thread of findem.exe for each template
        to get cross-correlation maps
        """
        ### check image
        processAndSaveImage(imgdict, params)
        dwnimgname = imgdict['filename']+".dwn.mrc"
        if not os.path.isfile(dwnimgname):
                apDisplay.printError("cound not find image to process: "+dwnimgname)
        
        ### FindEM crashes when an input image is longer than 76 characters
        if len(dwnimgname) > 76:
                randlink = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in range(10))
                randlink+= '.mrc'
                os.symlink(dwnimgname, randlink)

        ### check template
        if len(params['templatelist']) < 1:
                apDisplay.printError("templatelist == 0; there are no templates")

        joblist = []
        ccmapfilelist = []

        t0 = time.time()
        for i,templatename in enumerate(params['templatelist']):
                classavg = i + 1

                #DETERMINE OUTPUT FILE NAME
                #CHANGE THIS TO BE 00%i in future
                numstr = "%03d" % classavg
                #numstr = str(classavg%10)+"00"
                ccmapfile="cccmaxmap"+numstr+".mrc"
                apFile.removeFile(ccmapfile)

                #GET FINDEM RUN COMMANDS
                if len(dwnimgname) > 76:
                        feed = findEMString(classavg, templatename, randlink, ccmapfile, params)
                else:
                        feed = findEMString(classavg, templatename, dwnimgname, ccmapfile, params)
                


                #RUN THE PROGRAM
                if thread is True:
                        job = findemjob(feed)
                        joblist.append(job)
                        job.start()
                else:
                        execFindEM(feed)

                #STORE OUTPUT FILE
                ccmapfilelist.append(ccmapfile)

        # get findemexe name
        findemexepath = getFindEMPath()
        findemexename = os.path.basename(findemexepath)

        ### WAIT FOR THREADS TO COMPLETE
        if thread is True:
                apDisplay.printMsg("waiting for "+str(len(joblist))+" findem threads to complete")
                numtimes = 0
                for i,job in enumerate(joblist):
                        while job.isAlive():
                                sys.stderr.write(".")
                                time.sleep(1.5)
                                numtimes+=1
                                if numtimes == 40:
                                        pidof = "pidof %s" % findemexename
                                        pids=subprocess.Popen(pidof, shell=True,stdout=subprocess.PIPE).stdout.read()
                                        pids = pids.split()
                                        for pid in pids:
                                                os.kill(int(float(pid)),9)
                                        
                                        apDisplay.printWarning("\nFindEM likely stalled.  Re-running the template correlator command\n")
                                        runFindEM(imgdict,params,thread)
                                
                sys.stderr.write("\n")
        apDisplay.printMsg("FindEM finished in "+apDisplay.timeString(time.time()-t0))

        ### READ OUTPUT FILES
        ccmaplist = []
        for ccmapfile in ccmapfilelist:
                if not os.path.isfile(ccmapfile):
                        apDisplay.printError("findem.exe did not run or crashed.\n")
                ccmaxmap = apImage.mrcToArray(ccmapfile)
                ccmaplist.append(ccmaxmap)

        return ccmaplist