Ejemplo n.º 1
0
 def test_application_with_no_dependencies(self):
     env = self.env
     app = Application(env, 'test', [
         Container(env, str(cid), rnd.uniform(0, 10),
                   rnd.uniform(1024, 10240), rnd.uniform(1024, 10240),
                   rnd.uniform(0, 10), rnd.uniform(0, 100))
         for cid in range(10)
     ])
     self.assertEqual(len(app.get_sources()), 10)
Ejemplo n.º 2
0
 def generate(self):
   n_seq_steps = rnd.randint(self.__min_seq_steps, self.__max_seq_steps)
   n_parallel_steps = rnd.randint(self.__min_parallel_steps, self.__max_parallel_steps)
   total_steps = n_seq_steps + n_parallel_steps
   assert total_steps > 0
   p_seq_step = n_seq_steps/total_steps
   n_nodes = 0
   containers, last_step = [], []
   for is_seq in rnd.choice(a=[True, False], size=total_steps, p=[p_seq_step, 1 - p_seq_step]):
     cpus = rnd.uniform(self.__min_cpus, self.__max_cpus)
     mem = rnd.randint(self.__min_mem, self.__max_mem)
     disk = rnd.randint(self.__min_disk, self.__max_disk)
     gpus = rnd.randint(self.__min_gpus, self.__max_gpus)
     unit_output_size = rnd.randint(self.__min_output_size, self.__max_output_size)
     if is_seq:
       cid = n_nodes + 1
       runtime = rnd.uniform(self.__min_runtime, self.__max_runtime)
       output_size = unit_output_size * runtime
       c = Container(self.__env, str(cid), cpus=cpus, mem=mem, disk=disk, gpus=gpus,
                     runtime=runtime, output_size=output_size)
       for prev in last_step:
         c.add_dependencies(prev)
       containers += c,
       last_step = [str(cid)]
       n_nodes += 1
     else:
       parallel_level = rnd.randint(self.__min_parallel_level, self.__max_parallel_level) \
         if len(last_step) < 2 else len(last_step)
       for i, cid in enumerate(range(n_nodes + 1, n_nodes + parallel_level + 1)):
         runtime = rnd.uniform(self.__min_runtime, self.__max_runtime)
         output_size = unit_output_size * runtime
         c = Container(self.__env, str(cid), cpus=cpus, mem=mem, disk=disk, gpus=gpus,
                       runtime=runtime, output_size=output_size)
         cur = i % parallel_level
         while cur < len(last_step):
           c.add_dependencies(last_step[cur])
           cur += parallel_level
         containers += c,
       last_step = [str(i) for i in range(n_nodes + 1, n_nodes + parallel_level + 1)]
       n_nodes += parallel_level
   app = Application(self.__env, str(uuid.uuid4()), containers)
   # app.visualize()
   return app
Ejemplo n.º 3
0
 def setUp(self):
     self.env = simpy.Environment()
     env = self.env
     contrs = [
         Container(env, str(cid), rnd.uniform(0, 10),
                   rnd.uniform(1024, 10240), rnd.uniform(1024, 10240),
                   rnd.uniform(0, 10), rnd.uniform(0, 100))
         for cid in range(10)
     ]
     for c in contrs:
         c.add_dependencies(*[str(i) for i in range(int(c.id))])
     self.app = Application(env, 'test', contrs)
Ejemplo n.º 4
0
 def generate(self):
   dag = self.__dag_gen.generate()
   containers = {}
   for n in dag.nodes:
     containers[n] = Container(self.__env, str(n),
                               cpus=rnd.uniform(self.__cpus_lo, self.__cpus_hi),
                               mem=rnd.randint(self.__mem_lo, self.__mem_hi),
                               disk=rnd.randint(self.__disk_lo, self.__disk_hi),
                               gpus=rnd.randint(self.__gpus_lo, self.__gpus_hi),
                               runtime=rnd.uniform(self.__runtime_lo, self.__runtime_hi),
                               output_size=rnd.randint(self.__output_size_lo,
                                                       self.__output_size_hi))
   for u, v in dag.edges:
     containers[v].add_dependencies(str(u))
   app = Application(self.__env, str(uuid.uuid4()), containers.values())
   # app.visualize()
   return app
Ejemplo n.º 5
0
 def _submit(self):
     counter = 0
     rnd = np.random
     while True:
         c = Container(self.__env,
                       str(counter),
                       rnd.randint(1, 4),
                       rnd.randint(1024, 4096),
                       rnd.randint(1024, 10240),
                       rnd.randint(1, 4),
                       rnd.randint(10, 20),
                       placement=str(rnd.randint(0, 10)))
         yield self.__dispatch_q.put(c)
         self.logger.info(
             '[%d] Submitted container %s: cpus: %.1f, mem: %d, disk: %d, gpus: %d, '
             'runtime: %d, placement: %s' %
             (self.__env.now, c.id, c.cpus, c.mem, c.disk, c.gpus,
              c.runtime, c.placement))
         yield self.__env.timeout(rnd.randint(1, 20))
         counter += 1
Ejemplo n.º 6
0
    def test_one_app_w_dep(self):
        """
    Test the scheduler with an application with dependencies.

    In this test, resources in the cluster are sufficient for running all containers in
    parallel.

    The test examines:

    1. Whether the application finishes end-to-end
    2. Whether all the containers are run and finished
    3. The maximum runtime differs from the simulator clock within a schedule interval (, which
       indicates all the containers are run in parallel)

    """
        from scheduler.opportunistic import OpportunisticGlobalScheduler
        env = self.env
        contrs = [
            Container(env, str(cid), 1, 1024, 1024, 1, rnd.uniform(2, 100))
            for cid in range(16)
        ]
        app = Application(env, 'test', contrs)
        for c in app.containers:
            c.add_dependencies(*[str(i) for i in range(int(c.id))])
        dispatch_q, notify_q = simpy.Store(env), simpy.Store(env)
        hosts = [Host(env, str(i), 1, 1024, 1024, 1) for i in range(1)]
        cluster = Cluster(env, dispatch_q, notify_q, hosts)
        global_scheduler = OpportunisticGlobalScheduler(
            env, dispatch_q, notify_q, cluster)
        cluster.start()
        global_scheduler.start()
        global_scheduler.submit(app)
        local_scheduler = global_scheduler.get_scheduler(app.id)
        env.run()
        self.assertTrue(app.is_finished)
        self.assertTrue(all([c.is_finished for c in contrs]))
        self.assertAlmostEqual(env.now,
                               sum([c.runtime for c in contrs]),
                               delta=(local_scheduler.interval - 1) * 16)
Ejemplo n.º 7
0
 def _load_data(self, trace_f):
     env = self.__env
     with open(trace_f) as f:
         jobs = yaml.load(f)
         # self.logger.info('Processing job %s'%j['id'])
         for j in jobs:
             contrs = []
             for t in j['tasks']:
                 task_id, runtime, n_inst = str(
                     t['id']), t['runtime'], t['n_instances']
                 cpus, mem = t['cpus'], t['mem']
                 deps = [str(d) for d in t['dependencies']]
                 contrs += Container(env,
                                     task_id,
                                     cpus=cpus,
                                     mem=mem * self.MEM_SCALE_FACTOR,
                                     output_size=mem *
                                     self.__output_size_scale_factor,
                                     runtime=runtime,
                                     instances=n_inst,
                                     dependencies=deps),
             app = Application(env, j['id'], contrs)
             self._bin_insert(j['submit_time'], app)