Ejemplo n.º 1
0
    def verify_batch(self, proofs, single_optim=True, proof_v8=False):
        """
        BP batch verification
        :param proofs:
        :param single_optim: single proof memory optimization
        :param proof_v8: previous testnet version
        :return:
        """
        max_length = 0
        for proof in proofs:
            utils.ensure(is_reduced(proof.taux), "Input scalar not in range")
            utils.ensure(is_reduced(proof.mu), "Input scalar not in range")
            utils.ensure(is_reduced(proof.a), "Input scalar not in range")
            utils.ensure(is_reduced(proof.b), "Input scalar not in range")
            utils.ensure(is_reduced(proof.t), "Input scalar not in range")
            utils.ensure(len(proof.V) >= 1, "V does not have at least one element")
            utils.ensure(len(proof.L) == len(proof.R), "|L| != |R|")
            utils.ensure(len(proof.L) > 0, "Empty proof")
            max_length = max(max_length, len(proof.L))

        utils.ensure(max_length < 32, "At least one proof is too large")

        maxMN = 1 << max_length
        logN = 6
        N = 1 << logN
        tmp = _ensure_dst_key()

        # setup weighted aggregates
        is_single = len(proofs) == 1 and single_optim  # ph4
        z1 = init_key(_ZERO)
        z3 = init_key(_ZERO)
        m_z4 = vector_dup(_ZERO, maxMN) if not is_single else None
        m_z5 = vector_dup(_ZERO, maxMN) if not is_single else None
        m_y0 = init_key(_ZERO)
        y1 = init_key(_ZERO)
        muex_acc = init_key(_ONE)

        Gprec = self._gprec_aux(maxMN)
        Hprec = self._hprec_aux(maxMN)

        for proof in proofs:
            M = 1
            logM = 0
            while M <= _BP_M and M < len(proof.V):
                logM += 1
                M = 1 << logM

            utils.ensure(len(proof.L) == 6 + logM, "Proof is not the expected size")
            MN = M * N
            weight_y = crypto.encodeint(crypto.random_scalar())
            weight_z = crypto.encodeint(crypto.random_scalar())

            # Reconstruct the challenges
            hash_cache = hash_vct_to_scalar(None, proof.V)
            y = hash_cache_mash(None, hash_cache, proof.A, proof.S)
            utils.ensure(y != _ZERO, "y == 0")
            z = hash_to_scalar(None, y)
            copy_key(hash_cache, z)
            utils.ensure(z != _ZERO, "z == 0")

            x = hash_cache_mash(None, hash_cache, z, proof.T1, proof.T2)
            utils.ensure(x != _ZERO, "x == 0")
            x_ip = hash_cache_mash(None, hash_cache, x, proof.taux, proof.mu, proof.t)
            utils.ensure(x_ip != _ZERO, "x_ip == 0")

            # PAPER LINE 61
            sc_mulsub(m_y0, proof.taux, weight_y, m_y0)
            zpow = vector_powers(z, M + 3)

            k = _ensure_dst_key()
            ip1y = vector_power_sum(y, MN)
            sc_mulsub(k, zpow[2], ip1y, _ZERO)
            for j in range(1, M + 1):
                utils.ensure(j + 2 < len(zpow), "invalid zpow index")
                sc_mulsub(k, zpow.to(j + 2), _BP_IP12, k)

            # VERIFY_line_61rl_new
            sc_muladd(tmp, z, ip1y, k)
            sc_sub(tmp, proof.t, tmp)

            sc_muladd(y1, tmp, weight_y, y1)
            weight_y8 = init_key(weight_y)
            if not proof_v8:
                weight_y8 = sc_mul(None, weight_y, _EIGHT)

            muex = MultiExpSequential(points=[pt for pt in proof.V])
            for j in range(len(proof.V)):
                sc_mul(tmp, zpow[j + 2], weight_y8)
                muex.add_scalar(init_key(tmp))

            sc_mul(tmp, x, weight_y8)
            muex.add_pair(init_key(tmp), proof.T1)

            xsq = _ensure_dst_key()
            sc_mul(xsq, x, x)

            sc_mul(tmp, xsq, weight_y8)
            muex.add_pair(init_key(tmp), proof.T2)

            weight_z8 = init_key(weight_z)
            if not proof_v8:
                weight_z8 = sc_mul(None, weight_z, _EIGHT)

            muex.add_pair(weight_z8, proof.A)
            sc_mul(tmp, x, weight_z8)
            muex.add_pair(init_key(tmp), proof.S)

            multiexp(tmp, muex, False)
            add_keys(muex_acc, muex_acc, tmp)
            del muex

            # Compute the number of rounds for the inner product
            rounds = logM + logN
            utils.ensure(rounds > 0, "Zero rounds")

            # PAPER LINES 21-22
            # The inner product challenges are computed per round
            w = _ensure_dst_keyvect(None, rounds)
            for i in range(rounds):
                hash_cache_mash(tmp_bf_0, hash_cache, proof.L[i], proof.R[i])
                w.read(i, tmp_bf_0)
                utils.ensure(w[i] != _ZERO, "w[i] == 0")

            # Basically PAPER LINES 24-25
            # Compute the curvepoints from G[i] and H[i]
            yinvpow = init_key(_ONE)
            ypow = init_key(_ONE)
            yinv = invert(None, y)
            self.gc(61)

            winv = _ensure_dst_keyvect(None, rounds)
            for i in range(rounds):
                invert(tmp_bf_0, w.to(i))
                winv.read(i, tmp_bf_0)
                self.gc(62)

            g_scalar = _ensure_dst_key()
            h_scalar = _ensure_dst_key()
            twoN = self._two_aux(N)
            for i in range(MN):
                copy_key(g_scalar, proof.a)
                sc_mul(h_scalar, proof.b, yinvpow)

                for j in range(rounds - 1, -1, -1):
                    J = len(w) - j - 1

                    if (i & (1 << j)) == 0:
                        sc_mul(g_scalar, g_scalar, winv.to(J))
                        sc_mul(h_scalar, h_scalar, w.to(J))
                    else:
                        sc_mul(g_scalar, g_scalar, w.to(J))
                        sc_mul(h_scalar, h_scalar, winv.to(J))

                # Adjust the scalars using the exponents from PAPER LINE 62
                sc_add(g_scalar, g_scalar, z)
                utils.ensure(2 + i // N < len(zpow), "invalid zpow index")
                utils.ensure(i % N < len(twoN), "invalid twoN index")
                sc_mul(tmp, zpow.to(2 + i // N), twoN.to(i % N))
                sc_muladd(tmp, z, ypow, tmp)
                sc_mulsub(h_scalar, tmp, yinvpow, h_scalar)

                if not is_single:  # ph4
                    sc_mulsub(m_z4[i], g_scalar, weight_z, m_z4[i])
                    sc_mulsub(m_z5[i], h_scalar, weight_z, m_z5[i])
                else:
                    sc_mul(tmp, g_scalar, weight_z)
                    sub_keys(muex_acc, muex_acc, scalarmult_key(tmp, Gprec.to(i), tmp))

                    sc_mul(tmp, h_scalar, weight_z)
                    sub_keys(muex_acc, muex_acc, scalarmult_key(tmp, Hprec.to(i), tmp))

                if i != MN - 1:
                    sc_mul(yinvpow, yinvpow, yinv)
                    sc_mul(ypow, ypow, y)
                if i & 15 == 0:
                    self.gc(62)

            del (g_scalar, h_scalar, twoN)
            self.gc(63)

            sc_muladd(z1, proof.mu, weight_z, z1)
            muex = MultiExpSequential(
                point_fnc=lambda i, d: proof.L[i // 2]
                if i & 1 == 0
                else proof.R[i // 2]
            )
            for i in range(rounds):
                sc_mul(tmp, w[i], w[i])
                sc_mul(tmp, tmp, weight_z8)
                muex.add_scalar(tmp)
                sc_mul(tmp, winv[i], winv[i])
                sc_mul(tmp, tmp, weight_z8)
                muex.add_scalar(tmp)

            acc = multiexp(None, muex, False)
            add_keys(muex_acc, muex_acc, acc)

            sc_mulsub(tmp, proof.a, proof.b, proof.t)
            sc_mul(tmp, tmp, x_ip)
            sc_muladd(z3, tmp, weight_z, z3)

        sc_sub(tmp, m_y0, z1)
        z3p = sc_sub(None, z3, y1)

        check2 = crypto.encodepoint(
            crypto.ge25519_double_scalarmult_base_vartime(
                crypto.decodeint(z3p), crypto.xmr_H(), crypto.decodeint(tmp)
            )
        )
        add_keys(muex_acc, muex_acc, check2)

        if not is_single:  # ph4
            muex = MultiExpSequential(
                point_fnc=lambda i, d: Gprec.to(i // 2)
                if i & 1 == 0
                else Hprec.to(i // 2)
            )
            for i in range(maxMN):
                muex.add_scalar(m_z4[i])
                muex.add_scalar(m_z5[i])
            add_keys(muex_acc, muex_acc, multiexp(None, muex, True))

        if muex_acc != _ONE:
            raise ValueError("Verification failure at step 2")
        return True
Ejemplo n.º 2
0
def generate_ring_signature(
    prefix_hash: bytes,
    image: Ge25519,
    pubs: list[Ge25519],
    sec: Sc25519,
    sec_idx: int,
    test: bool = False,
) -> Sig:
    """
    Generates ring signature with key image.
    void crypto_ops::generate_ring_signature()
    """
    from trezor.utils import memcpy

    if test:
        t = crypto.scalarmult_base(sec)
        if not crypto.point_eq(t, pubs[sec_idx]):
            raise ValueError("Invalid sec key")

        k_i = monero.generate_key_image(crypto.encodepoint(pubs[sec_idx]), sec)
        if not crypto.point_eq(k_i, image):
            raise ValueError("Key image invalid")
        for k in pubs:
            crypto.check_ed25519point(k)

    buff_off = len(prefix_hash)
    buff = bytearray(buff_off + 2 * 32 * len(pubs))
    memcpy(buff, 0, prefix_hash, 0, buff_off)
    mvbuff = memoryview(buff)

    sum = crypto.sc_0()
    k = crypto.sc_0()
    sig = []

    for _ in range(len(pubs)):
        sig.append([crypto.sc_0(), crypto.sc_0()])  # c, r

    for i in range(len(pubs)):
        if i == sec_idx:
            k = crypto.random_scalar()
            tmp3 = crypto.scalarmult_base(k)
            crypto.encodepoint_into(mvbuff[buff_off:buff_off + 32], tmp3)
            buff_off += 32

            tmp3 = crypto.hash_to_point(crypto.encodepoint(pubs[i]))
            tmp2 = crypto.scalarmult(tmp3, k)
            crypto.encodepoint_into(mvbuff[buff_off:buff_off + 32], tmp2)
            buff_off += 32

        else:
            sig[i] = [crypto.random_scalar(), crypto.random_scalar()]
            tmp3 = pubs[i]
            tmp2 = crypto.ge25519_double_scalarmult_base_vartime(
                sig[i][0], tmp3, sig[i][1])
            crypto.encodepoint_into(mvbuff[buff_off:buff_off + 32], tmp2)
            buff_off += 32

            tmp3 = crypto.hash_to_point(crypto.encodepoint(tmp3))
            tmp2 = crypto.ge25519_double_scalarmult_vartime2(
                sig[i][1], tmp3, sig[i][0], image)
            crypto.encodepoint_into(mvbuff[buff_off:buff_off + 32], tmp2)
            buff_off += 32

            sum = crypto.sc_add(sum, sig[i][0])

    h = crypto.hash_to_scalar(buff)
    sig[sec_idx][0] = crypto.sc_sub(h, sum)
    sig[sec_idx][1] = crypto.sc_mulsub(sig[sec_idx][0], sec, k)
    return sig