Ejemplo n.º 1
0
 def update_goAround(obstacle):
     if (self.goAround == 1):
         self.x += sin(tan_inv(obstacle.y - self.y / obstacle.x - self.x))
         self.y += cos(tan_inv(obstacle.y - self.y / obstacle.x - self.x))
         if ((pow(abs(self.x - obstacle.x), 2) +
              pow(abs(self.y - obstacle.y), 2)) >= 100):
             self.goAround = 2
         return
     if (self.goAround == 2):
         self.x += sin(
             tan_inv(self.target_y - self.y / self.target_x - self.x))
         self.y += cos(
             tan_inv(self.target_y - self.y / self.target_x - self.x))
Ejemplo n.º 2
0
 def update_target(self, alpha, explore, x_limit, y_limit, mean_x, mean_y):
     temp_x = self.x * (1 - alpha) + alpha * explore * (
         self.x + (random() * (x_limit / 2) -
                   (x_limit / 4))) + alpha * (1 - explore) * mean_x
     temp_y = self.y * (1 - alpha) + alpha * explore * (
         self.y + (random() * (y_limit / 2) -
                   (y_limit / 4))) + alpha * (1 - explore) * mean_y
     # flag=0
     # if(explore==1):
     # 	if(self.x>x_limit-25 or self.x<-x_limit+25):
     # 		temp_x=-self.x
     # 		flag=1
     # 	else:
     # 		temp_x=self.x
     # 	if(self.y>y_limit-25 or self.y<-y_limit+25):
     # 		temp_y=-self.y
     # 		flag=1
     # 	else:
     # 		temp_y=self.y
     # if(flag==1):
     # 	self.angle=tan_inv(temp_y,temp_x)
     # 	return
     # temp_x=self.x*(1-alpha)+alpha*explore*(self.x+(random()*(x_limit/2)-(x_limit/4)))+alpha*(1-explore)*mean_x
     # temp_y=self.y*(1-alpha)+alpha*explore*(self.y+(random()*(y_limit/2)-(y_limit/4)))+alpha*(1-explore)*mean_y
     if (temp_x > x_limit or temp_x < -x_limit):
         while (not (temp_x > x_limit or temp_x < -x_limit)):
             temp_x = self.x + (random() * (x_limit / 2) - (x_limit / 4))
     if (temp_y > y_limit or temp_y < -y_limit):
         while (not (temp_y > y_limit or temp_y < -y_limit)):
             temp_y = self.y + (random() * (x_limit / 2) - (x_limit / 4))
     self.target_x = temp_x
     self.target_y = temp_y
     self.angle = tan_inv((temp_y - self.y), (temp_x - self.x))
Ejemplo n.º 3
0
 def update_target_obst(self, x_limit, y_limit, mean_x, mean_y):
     temp_x = mean_x
     temp_y = mean_y
     # if(temp_x>x_limit or temp_x<-x_limit):
     # 	temp_x=self.x+(random()*(x_limit/2)-(x_limit/4))
     # if(temp_y>y_limit or temp_y<-y_limit):
     # 	temp_y=self.y+(random()*(x_limit/2)-(x_limit/4))
     # temp_x=0.7*temp_x + 0.3*(self.x+(random()*(x_limit/2)-(x_limit/4)))
     # temp_y=0.7*temp_x + 0.3*(self.y+(random()*(y_limit/2)-(y_limit/4)))
     self.target_x = temp_x
     self.target_y = temp_y
     self.angle = tan_inv((temp_y - self.y), (temp_x - self.x))
 def update_target(self, alpha, explore, x_limit, y_limit, mean_x, mean_y):
     if self.sleep:
         self.sleep = False
         return
     temp_x = self.x * (1 - alpha) + alpha * explore * (
         self.x + (random() * (x_limit / 2) -
                   (x_limit / 4))) + alpha * (1 - explore) * mean_x
     temp_y = self.y * (1 - alpha) + alpha * explore * (
         self.y + (random() * (y_limit / 2) -
                   (y_limit / 4))) + alpha * (1 - explore) * mean_y
     if (temp_x > x_limit or temp_x < -x_limit):
         while (not (temp_x > x_limit or temp_x < -x_limit)):
             temp_x = self.x + (random() * (x_limit / 2) - (x_limit / 4))
     if (temp_y > y_limit or temp_y < -y_limit):
         while (not (temp_y > y_limit or temp_y < -y_limit)):
             temp_y = self.y + (random() * (x_limit / 2) - (x_limit / 4))
     self.target_x = temp_x
     self.target_y = temp_y
     self.angle = tan_inv((temp_y - self.y), (temp_x - self.x))
Ejemplo n.º 5
0
def main_obstacle_1(no_targets, no_observers, no_obstacles, targets, observers,
                    obstacles):
    step = 0
    data_until_update = []
    total_count_obst = 0
    while (step <= total_steps):
        if (step % update_steps == 0):
            [observer_target_dict, observer_obstacle_dict
             ] = update_for_observers(observers, targets, obstacles)
            [target_observer_dict, target_obstacle_dict
             ] = update_for_targets(observers, targets, obstacles)
            for i in observer_target_dict:
                temp_arr_x = []
                temp_arr_y = []
                for j in observer_target_dict[i]:
                    temp_arr_x.append(targets[j].x)
                    temp_arr_y.append(targets[j].y)
                if (len(temp_arr_x) and len(temp_arr_y)):
                    mean_x = mean(temp_arr_x)
                    mean_y = mean(temp_arr_y)
                    explore = pow(1 / (len(observer_target_dict[i]) + 1), 2)
                    rwrd = reward_obs_1(observers[i], targets,
                                        observer_target_dict[i], obstacles,
                                        observer_obstacle_dict[i], x_limit,
                                        y_limit, explore, mean_x, mean_y)
                    E_min = LP_CTO(rwrd, 1.0,
                                   template_probability_distribution)[0]
                    alpha = BRLP_CTO(rwrd, template_probability_distribution,
                                     E_min)
                    observers[i].update_target(alpha, explore, x_limit,
                                               y_limit, mean_x, mean_y)
                else:
                    observers[i].update_target(1, 1, x_limit, y_limit, 0, 0)

            for i in target_observer_dict:
                temp_arr_x = []
                temp_arr_y = []
                for j in target_observer_dict[i]:
                    temp_arr_x.append(observers[j].x)
                    temp_arr_y.append(observers[j].y)
                target_obstacle_dict[i].sort(reverse=True,
                                             key=lambda i: obstacles[i][0])
                if (len(temp_arr_x) and len(temp_arr_y)):
                    mean_x = mean(temp_arr_x)
                    mean_y = mean(temp_arr_y)
                    obst_idx = -1
                    tan_inv_ot = tan_inv((targets[i].y - mean_y),
                                         (targets[i].x - mean_x))
                    for j in target_obstacle_dict[i]:
                        tan_inv_oo = tan_inv((obstacles[j][1][0].y - mean_y),
                                             (obstacles[j][1][0].x - mean_x))
                        if (abs(tan_inv_oo - tan_inv_ot) <= math.pi / 2):
                            obst_idx = j
                            break
                    if (obst_idx == -1):
                        targets[i].update_target(x_limit, y_limit, mean_x,
                                                 mean_y)
                    else:
                        sx = 0
                        sy = 0
                        for j in obstacles[obst_idx][1]:
                            sx += j.x
                            sy += j.y
                        n = obstacles[obst_idx][0]
                        targets[i].update_target_obst(x_limit, y_limit, sx / n,
                                                      sy / n)

        for i in observers:
            i.update(x_limit, y_limit)
        for i in targets:
            i.update(x_limit, y_limit)
        step += 1
        ans_dict = update_for_observers1(observers, targets)
        for i in ans_dict:
            for j in ans_dict[i]:
                total_count_obst += 1
    return total_count_obst