Ejemplo n.º 1
0
    def test_summary(self):
        am = arch_model(self.y, mean='ar', lags=[1, 3, 5])
        res = am.fit(update_freq=0, disp=DISPLAY)
        res.summary()

        am = arch_model(self.y, mean='ar', lags=[1, 3, 5], dist='studentst')
        res = am.fit(update_freq=0, disp=DISPLAY)
        res.summary()
Ejemplo n.º 2
0
def test_1d_exog():
    y = np.random.standard_normal((300))
    x = np.random.standard_normal((300))
    am = arch_model(y, x, mean="ARX", lags=2, vol="ARCH", q=0)
    res = am.fit()
    am = arch_model(y, x[:, None], mean="ARX", lags=2, vol="ARCH", q=0)
    res2 = am.fit()
    assert_series_equal(res.params, res2.params)
Ejemplo n.º 3
0
    def test_starting_values(self):
        am = arch_model(self.y, mean='ar', lags=[1, 3, 5])
        res = am.fit(cov_type='mle', update_freq=0)
        res2 = am.fit(starting_values=res.params, update_freq=0)

        am = arch_model(self.y, mean='zero')
        sv = np.array([1.0, 0.3, 0.8])
        with warnings.catch_warnings(record=True) as w:
            am.fit(starting_values=sv, update_freq=0)
            assert_equal(len(w), 1)
Ejemplo n.º 4
0
    def test_starting_values(self):
        am = arch_model(self.y, mean='ar', lags=[1, 3, 5])
        res = am.fit(cov_type='mle', update_freq=0)
        res2 = am.fit(starting_values=res.params, update_freq=0)

        am = arch_model(self.y, mean='zero')
        sv = np.array([1.0, 0.3, 0.8])
        with warnings.catch_warnings(record=True) as w:
            am.fit(starting_values=sv, update_freq=0)
            assert_equal(len(w), 1)
Ejemplo n.º 5
0
 def test_optimization_options(self):
     am = arch_model(None)
     data = am.simulate([0.0, 0.1, 0.1, 0.85], 2500)
     am = arch_model(data.data)
     std = am.fit(disp='off')
     loose = am.fit(tol=1e-2, disp='off')
     assert std.loglikelihood != loose.loglikelihood
     with warnings.catch_warnings(record=True) as w:
         short = am.fit(options={'maxiter': 3}, disp='off')
     assert len(w) == 1
     assert std.loglikelihood != short.loglikelihood
     assert short.convergence_flag != 0
Ejemplo n.º 6
0
def test_backcast_restricted(simulated_data):
    # GH 440
    mod = arch_model(simulated_data)
    res = mod.fit(disp="off")
    subset = (simulated_data[100:600] if isinstance(simulated_data, np.ndarray)
              else simulated_data.iloc[100:600])
    mod_restricted = arch_model(subset)
    res_restricted = mod_restricted.fit(disp="off")
    res_limited = mod.fit(first_obs=100, last_obs=600, disp="off")
    assert_almost_equal(res_restricted.model._backcast,
                        res_restricted.model._backcast)
    assert np.abs(res.model._backcast - res_limited.model._backcast) > 1e-8
Ejemplo n.º 7
0
    def test_model_obs_equivalence(self):
        """Tests models that should use the same observation"""
        am = arch_model(self.y_series.iloc[100:900])
        res = am.fit(disp='off')
        am = arch_model(self.y_series)
        res2 = am.fit(disp='off', first_obs=100, last_obs=900)
        index = self.y_series.index
        res3 = am.fit(disp='off', first_obs=index[100], last_obs=index[900])
        assert_equal(res.params.values, res2.params.values)
        assert_equal(res2.params.values, res3.params.values)

        am = arch_model(self.y_series, hold_back=100)
        res4 = am.fit(disp='off', last_obs=900)
        assert_equal(res.params.values, res4.params.values)
Ejemplo n.º 8
0
    def test_model_obs_equivalence(self):
        """Tests models that should use the same observation"""
        am = arch_model(self.y_series.iloc[100:900])
        res = am.fit(disp='off')
        am = arch_model(self.y_series)
        res2 = am.fit(disp='off', first_obs=100, last_obs=900)
        index = self.y_series.index
        res3 = am.fit(disp='off', first_obs=index[100], last_obs=index[900])
        assert_equal(res.params.values, res2.params.values)
        assert_equal(res2.params.values, res3.params.values)

        am = arch_model(self.y_series, hold_back=100)
        res4 = am.fit(disp='off', last_obs=900)
        assert_equal(res.params.values, res4.params.values)
Ejemplo n.º 9
0
    def test_starting_values(self):
        am = arch_model(self.y, mean='ar', lags=[1, 3, 5])
        res = am.fit(cov_type='mle', update_freq=0, disp=DISPLAY)
        res2 = am.fit(starting_values=res.params, update_freq=0, disp=DISPLAY)
        assert isinstance(res, ARCHModelResult)
        assert isinstance(res2, ARCHModelResult)
        assert len(res.params) == 7
        assert len(res2.params) == 7

        am = arch_model(self.y, mean='zero')
        sv = np.array([1.0, 0.3, 0.8])
        with warnings.catch_warnings(record=True) as w:
            am.fit(starting_values=sv, update_freq=0, disp=DISPLAY)
            assert_equal(len(w), 1)
Ejemplo n.º 10
0
    def test_starting_values(self):
        am = arch_model(self.y, mean='ar', lags=[1, 3, 5])
        res = am.fit(cov_type='mle', update_freq=0, disp=DISPLAY)
        res2 = am.fit(starting_values=res.params, update_freq=0, disp=DISPLAY)
        assert isinstance(res, ARCHModelResult)
        assert isinstance(res2, ARCHModelResult)
        assert len(res.params) == 7
        assert len(res2.params) == 7

        am = arch_model(self.y, mean='zero')
        sv = np.array([1.0, 0.3, 0.8])
        with warnings.catch_warnings(record=True) as w:
            am.fit(starting_values=sv, update_freq=0, disp=DISPLAY)
            assert_equal(len(w), 1)
Ejemplo n.º 11
0
 def test_optimization_options(self):
     norm = Normal(random_state=RandomState([12891298, 843084]))
     am = arch_model(None)
     am.distribution = norm
     data = am.simulate(np.array([0.0, 0.1, 0.1, 0.85]), 2500)
     am = arch_model(data.data)
     std = am.fit(disp=DISPLAY)
     loose = am.fit(tol=1e-2, disp=DISPLAY)
     assert std.loglikelihood >= loose.loglikelihood
     with warnings.catch_warnings(record=True) as w:
         short = am.fit(options={"maxiter": 3}, disp=DISPLAY)
     assert len(w) == 1
     assert std.loglikelihood >= short.loglikelihood
     assert short.convergence_flag != 0
Ejemplo n.º 12
0
    def test_model_obs_equivalence_ar(self):
        """Tests models that should use the same observation"""
        am = arch_model(self.y_series.iloc[100:900], mean="AR", lags=[1, 2, 4])
        res = am.fit(disp=DISPLAY)
        am = arch_model(self.y_series, mean="AR", lags=[1, 2, 4])
        res2 = am.fit(disp=DISPLAY, first_obs=100, last_obs=900)
        index = self.y_series.index
        res3 = am.fit(disp=DISPLAY, first_obs=index[100], last_obs=index[900])
        assert_almost_equal(res.params.values, res2.params.values, decimal=4)
        assert_almost_equal(res2.params.values, res3.params.values, decimal=4)

        am = arch_model(self.y_series, mean="AR", lags=[1, 2, 4], hold_back=100)
        res4 = am.fit(disp=DISPLAY, first_obs=4, last_obs=900)
        assert_almost_equal(res.params.values, res4.params.values, decimal=4)
        assert am.hold_back == 100
Ejemplo n.º 13
0
    def test_sample_adjustment(self):
        am = arch_model(self.y_series, vol='Constant')
        res = am.fit(disp='off')

        res_adj = am.fit(disp='off',
                         first_obs=0,
                         last_obs=self.y_series.shape[0] + 1)
        assert_equal(res.resid.values, res_adj.resid.values)
        assert_equal(res.params.values, res_adj.params.values)

        res = am.fit(disp='off', first_obs=100)
        assert res.fit_start == 100
        res_adj = am.fit(disp='off', first_obs=self.y_series.index[100])
        assert_equal(res.params.values, res_adj.params.values)
        assert_equal(res.resid.values, res_adj.resid.values)

        res = am.fit(disp='off', last_obs=900)
        res2 = am.fit(disp='off', last_obs=self.y_series.index[900])
        assert_equal(res.params.values, res2.params.values)
        assert_equal(res.resid.values, res2.resid.values)

        res = am.fit(disp='off', first_obs=100, last_obs=900)
        res2 = am.fit(disp='off',
                      first_obs=self.y_series.index[100],
                      last_obs=self.y_series.index[900])
        assert_equal(res.params.values, res2.params.values)
        assert_equal(res.resid.values, res2.resid.values)
Ejemplo n.º 14
0
    def test_sample_adjustment(self):
        am = arch_model(self.y_series, vol='Constant')
        res = am.fit(disp='off')

        res_adj = am.fit(disp='off',
                         first_obs=0,
                         last_obs=self.y_series.shape[0] + 1)
        assert_equal(res.resid.values, res_adj.resid.values)
        assert_equal(res.params.values, res_adj.params.values)

        res = am.fit(disp='off', first_obs=100)
        assert res.fit_start == 100
        res_adj = am.fit(disp='off', first_obs=self.y_series.index[100])
        assert_equal(res.params.values, res_adj.params.values)
        assert_equal(res.resid.values, res_adj.resid.values)

        res = am.fit(disp='off', last_obs=900)
        res2 = am.fit(disp='off', last_obs=self.y_series.index[900])
        assert_equal(res.params.values, res2.params.values)
        assert_equal(res.resid.values, res2.resid.values)

        res = am.fit(disp='off', first_obs=100, last_obs=900)
        res2 = am.fit(disp='off',
                      first_obs=self.y_series.index[100],
                      last_obs=self.y_series.index[900])
        assert_equal(res.params.values, res2.params.values)
        assert_equal(res.resid.values, res2.resid.values)
Ejemplo n.º 15
0
    def test_model_obs_equivalence_ar(self):
        """Tests models that should use the same observation"""
        am = arch_model(self.y_series.iloc[100:900], mean='AR', lags=[1, 2, 4])
        res = am.fit(disp='off')
        am = arch_model(self.y_series, mean='AR', lags=[1, 2, 4])
        res2 = am.fit(disp='off', first_obs=100, last_obs=900)
        index = self.y_series.index
        res3 = am.fit(disp='off', first_obs=index[100], last_obs=index[900])
        assert_almost_equal(res.params.values, res2.params.values)
        assert_almost_equal(res2.params.values, res3.params.values)

        am = arch_model(self.y_series, mean='AR', lags=[1, 2, 4],
                        hold_back=100)
        res4 = am.fit(disp='off', first_obs=4, last_obs=900)
        assert_almost_equal(res.params.values, res4.params.values, decimal=4)
        assert am.hold_back == 100
Ejemplo n.º 16
0
    def test_first_after_last(self):
        am = arch_model(self.y_series)
        with pytest.raises(ValueError):
            am.fit(disp='off', first_obs=500, last_obs=480)

        with pytest.raises(ValueError):
            am.fit(disp='off',
                   first_obs=self.y_series.index[500],
                   last_obs=self.y_series.index[480])
Ejemplo n.º 17
0
    def test_first_after_last(self):
        am = arch_model(self.y_series)
        with pytest.raises(ValueError):
            am.fit(disp='off', first_obs=500, last_obs=480)

        with pytest.raises(ValueError):
            am.fit(disp='off',
                   first_obs=self.y_series.index[500],
                   last_obs=self.y_series.index[480])
Ejemplo n.º 18
0
    def test_summary(self):
        am = arch_model(self.y, mean='ar', lags=[1, 3, 5])
        res = am.fit(update_freq=0, disp=DISPLAY)
        res.summary()

        am = arch_model(self.y, mean='ar', lags=[1, 3, 5], dist='studentst')
        assert isinstance(am.distribution, StudentsT)
        res = am.fit(update_freq=0, disp=DISPLAY)
        res.summary()

        am = arch_model(self.y, mean='ar', lags=[1, 3, 5], dist='ged')
        assert isinstance(am.distribution, GeneralizedError)
        res = am.fit(update_freq=0, disp=DISPLAY)
        res.summary()

        am = arch_model(self.y, mean='ar', lags=[1, 3, 5], dist='skewt')
        res = am.fit(update_freq=0, disp=DISPLAY)
        assert isinstance(am.distribution, SkewStudent)
        res.summary()
Ejemplo n.º 19
0
def test_autoscale():
    rs = np.random.RandomState(34254321)
    dist = Normal(random_state=rs)
    am = arch_model(None)
    am.distribution = dist
    data = am.simulate([0, 0.0001, 0.05, 0.94], nobs=1000)
    am = arch_model(data.data)
    with pytest.warns(DataScaleWarning):
        res = am.fit(disp=DISPLAY)
    assert_almost_equal(res.scale, 1.0)

    am = arch_model(data.data, rescale=True)
    res_auto = am.fit(disp=DISPLAY)
    assert_almost_equal(res_auto.scale, 10.0)

    am = arch_model(10 * data.data)
    res_manual = am.fit(disp=DISPLAY)
    assert_series_equal(res_auto.params, res_manual.params)

    res_no = arch_model(data.data, rescale=False).fit(disp=DISPLAY)
    assert res_no.scale == 1.0

    am = arch_model(10000 * data.data, rescale=True)
    res_big = am.fit(disp=DISPLAY)
    assert_almost_equal(res_big.scale, 0.1)
Ejemplo n.º 20
0
 def test_fixed_user_parameters(self):
     am = arch_model(self.y_series)
     res = am.fit(disp=DISPLAY)
     fixed_res = am.fix(res.params)
     assert_series_equal(res.conditional_volatility,
                         fixed_res.conditional_volatility)
     assert_series_equal(res.params, fixed_res.params)
     assert_equal(res.aic, fixed_res.aic)
     assert_equal(res.bic, fixed_res.bic)
     assert_equal(res.loglikelihood, fixed_res.loglikelihood)
     assert_equal(res.num_params, fixed_res.num_params)
     # Smoke for summary
     fixed_res.summary()
Ejemplo n.º 21
0
    def test_output_options(self):
        am = arch_model(self.y_series)
        orig_stdout = sys.stdout

        try:
            sio = StringIO()
            sys.stdout = sio
            am.fit(disp=DISPLAY)
            sio.seek(0)
            output = sio.read()
            assert len(output) == 0
        finally:
            sys.stdout = orig_stdout
Ejemplo n.º 22
0
 def test_fixed_user_parameters(self):
     am = arch_model(self.y_series)
     res = am.fit(disp=DISPLAY)
     fixed_res = am.fix(res.params)
     assert_series_equal(res.conditional_volatility,
                         fixed_res.conditional_volatility)
     assert_series_equal(res.params, fixed_res.params)
     assert_equal(res.aic, fixed_res.aic)
     assert_equal(res.bic, fixed_res.bic)
     assert_equal(res.loglikelihood, fixed_res.loglikelihood)
     assert_equal(res.num_params, fixed_res.num_params)
     # Smoke for summary
     fixed_res.summary()
Ejemplo n.º 23
0
    def test_fixed_user_parameters_new_model(self):
        am = arch_model(self.y_series)
        res = am.fit(disp=DISPLAY)
        new_am = arch_model(self.y_series)
        fixed_res = new_am.fix(res.params)
        assert_series_equal(res.conditional_volatility,
                            fixed_res.conditional_volatility)
        assert_series_equal(res.params, fixed_res.params)
        assert_equal(res.aic, fixed_res.aic)
        assert_equal(res.bic, fixed_res.bic)
        assert_equal(res.loglikelihood, fixed_res.loglikelihood)
        assert_equal(res.num_params, fixed_res.num_params)

        # Test first and last dates
        am = arch_model(self.y_series)
        res = am.fit(disp=DISPLAY, first_obs=100, last_obs=900)
        new_am = arch_model(self.y_series)
        fixed_res = new_am.fix(res.params, first_obs=100, last_obs=900)
        assert_series_equal(res.params, fixed_res.params)
        assert_equal(res.aic, fixed_res.aic)
        assert_equal(res.bic, fixed_res.bic)
        assert_equal(res.loglikelihood, fixed_res.loglikelihood)
        assert_equal(res.num_params, fixed_res.num_params)
Ejemplo n.º 24
0
    def test_fixed_user_parameters_new_model(self):
        am = arch_model(self.y_series)
        res = am.fit(disp=DISPLAY)
        new_am = arch_model(self.y_series)
        fixed_res = new_am .fix(res.params)
        assert_series_equal(res.conditional_volatility,
                            fixed_res.conditional_volatility)
        assert_series_equal(res.params, fixed_res.params)
        assert_equal(res.aic, fixed_res.aic)
        assert_equal(res.bic, fixed_res.bic)
        assert_equal(res.loglikelihood, fixed_res.loglikelihood)
        assert_equal(res.num_params, fixed_res.num_params)

        # Test first and last dates
        am = arch_model(self.y_series)
        res = am.fit(disp=DISPLAY, first_obs=100, last_obs=900)
        new_am = arch_model(self.y_series)
        fixed_res = new_am .fix(res.params, first_obs=100, last_obs=900)
        assert_series_equal(res.params, fixed_res.params)
        assert_equal(res.aic, fixed_res.aic)
        assert_equal(res.bic, fixed_res.bic)
        assert_equal(res.loglikelihood, fixed_res.loglikelihood)
        assert_equal(res.num_params, fixed_res.num_params)
Ejemplo n.º 25
0
    def test_output_options(self):
        import sys
        from arch.compat.python import StringIO
        am = arch_model(self.y_series)
        orig_stdout = sys.stdout
        try:
            sio = StringIO()
            sys.stdout = sio
            res = am.fit(disp='final')
            sio.seek(0)
            print('SIO!')
            print(sio.read())
        finally:
            sys.stdout = orig_stdout

        res = am.fit(disp='off')
Ejemplo n.º 26
0
    def test_output_options(self):
        import sys
        from arch.compat.python import StringIO
        am = arch_model(self.y_series)
        orig_stdout = sys.stdout
        try:
            sio = StringIO()
            sys.stdout = sio
            res = am.fit(disp='final')
            sio.seek(0)
            print('SIO!')
            print(sio.read())
        finally:
            sys.stdout = orig_stdout

        res = am.fit(disp='off')
Ejemplo n.º 27
0
    def test_convergence_warning(self):
        y = np.array([0.83277114, 0.45194014, -0.33475561, -0.49463896,
                      0.54715787, 1.11895382, 1.31280266, 0.81464021,
                      0.8532107, 1.0967188, 0.9346354, 0.92289249, 1.01339085,
                      1.071065, 1.42413486, 1.15392453, 1.10929691, 0.96162061,
                      0.96489515, 0.93250153, 1.34509807, 1.80951607,
                      1.66313783, 1.38610821, 1.26381761])
        am = arch_model(y, mean='ARX', lags=10, p=5, q=0)

        with pytest.warns(ConvergenceWarning):
            am.fit(disp=DISPLAY)

        with pytest.warns(ConvergenceWarning):
            am.fit(show_warning=True, disp=DISPLAY)

        with pytest.warns(DataScaleWarning):
            am.fit(show_warning=False, disp=DISPLAY)
Ejemplo n.º 28
0
    def test_convergence_warning(self):
        y = np.array([0.83277114, 0.45194014, -0.33475561, -0.49463896, 0.54715787,
                      1.11895382, 1.31280266, 0.81464021, 0.8532107, 1.0967188,
                      0.9346354, 0.92289249, 1.01339085, 1.071065, 1.42413486,
                      1.15392453, 1.10929691, 0.96162061, 0.96489515, 0.93250153,
                      1.34509807, 1.80951607, 1.66313783, 1.38610821, 1.26381761])
        am = arch_model(y, mean='ARX', lags=10, p=5, q=0)
        with warnings.catch_warnings(record=True) as w:
            am.fit()
            assert_equal(len(w), 1)

        with warnings.catch_warnings(record=True) as w:
            am.fit(show_warning=False)
            assert_equal(len(w), 0)

        with warnings.catch_warnings(record=True) as w:
            am.fit(show_warning=True)
            assert_equal(len(w), 1)
Ejemplo n.º 29
0
def test_missing_data_exception():
    y = np.random.standard_normal(1000)
    y[::29] = np.nan
    with pytest.raises(ValueError, match="NaN or inf values"):
        arch_model(y)
    y = np.random.standard_normal(1000)
    y[::53] = np.inf
    with pytest.raises(ValueError, match="NaN or inf values"):
        arch_model(y)
    y[::29] = np.nan
    y[::53] = np.inf
    with pytest.raises(ValueError, match="NaN or inf values"):
        arch_model(y)
Ejemplo n.º 30
0
    def test_convergence_warning(self):
        y = np.array([0.83277114, 0.45194014, -0.33475561, -0.49463896,
                      0.54715787, 1.11895382, 1.31280266, 0.81464021,
                      0.8532107, 1.0967188, 0.9346354, 0.92289249, 1.01339085,
                      1.071065, 1.42413486, 1.15392453, 1.10929691, 0.96162061,
                      0.96489515, 0.93250153, 1.34509807, 1.80951607,
                      1.66313783, 1.38610821, 1.26381761])
        am = arch_model(y, mean='ARX', lags=10, p=5, q=0)
        with warnings.catch_warnings(record=True) as w:
            am.fit(disp=DISPLAY)
            assert_equal(len(w), 1)

        with warnings.catch_warnings(record=True) as w:
            am.fit(show_warning=False, disp=DISPLAY)
            assert_equal(len(w), 0)

        with warnings.catch_warnings(record=True) as w:
            am.fit(show_warning=True, disp=DISPLAY)
            assert_equal(len(w), 1)
Ejemplo n.º 31
0
    def test_output_options(self):
        am = arch_model(self.y_series)
        orig_stdout = sys.stdout
        try:
            sio = StringIO()
            sys.stdout = sio
            am.fit(disp='final')
            sio.seek(0)
            print('SIO!')
            print(sio.read())
        finally:
            sys.stdout = orig_stdout

        try:
            sio = StringIO()
            sys.stdout = sio
            am.fit(disp='off')
            sio.seek(0)
            output = sio.read()
            assert len(output) == 0
        finally:
            sys.stdout = orig_stdout
Ejemplo n.º 32
0
    def test_arch_model(self):
        am = arch_model(self.y)
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, GARCH)
        assert isinstance(am.distribution, Normal)

        am = arch_model(self.y, mean='harx', lags=[1, 5, 22])
        assert isinstance(am, HARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='har', lags=[1, 5, 22])
        assert isinstance(am, HARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, self.x, mean='ls')
        assert isinstance(am, LS)
        assert isinstance(am.volatility, GARCH)
        am.__repr__()

        am = arch_model(self.y, mean='arx', lags=[1, 5, 22])
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='ar', lags=[1, 5, 22])
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='ar', lags=None)
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='zero')
        assert isinstance(am, ZeroMean)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, vol='Harch')
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, HARCH)

        am = arch_model(self.y, vol='Constant')
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, ConstantVariance)

        am = arch_model(self.y, vol='arch')
        assert isinstance(am.volatility, ARCH)

        am = arch_model(self.y, vol='egarch')
        assert isinstance(am.volatility, EGARCH)

        with pytest.raises(ValueError):
            arch_model(self.y, mean='unknown')
        with pytest.raises(ValueError):
            arch_model(self.y, vol='unknown')
        with pytest.raises(ValueError):
            arch_model(self.y, dist='unknown')

        am.fit(disp=DISPLAY)
Ejemplo n.º 33
0
 def test_pandas(self):
     am = arch_model(self.y_df, self.x_df, mean='ls')
     assert isinstance(am, LS)
Ejemplo n.º 34
0
def test_invalid_arch_model():
    with pytest.raises(TypeError, match="p must be"):
        arch_model(SP500, p="3")
Ejemplo n.º 35
0
def test_no_variance():
    mod = arch_model(np.ones(100))
    with pytest.warns(ConvergenceWarning):
        mod.fit(disp=DISPLAY)
Ejemplo n.º 36
0
 def test_pandas(self):
     am = arch_model(self.y_df, self.x_df, mean='ls')
     assert isinstance(am, LS)
Ejemplo n.º 37
0
    def test_arch_model(self):
        am = arch_model(self.y)
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, GARCH)
        assert isinstance(am.distribution, Normal)

        am = arch_model(self.y, mean='harx', lags=[1, 5, 22])
        assert isinstance(am, HARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='har', lags=[1, 5, 22])
        assert isinstance(am, HARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, self.x, mean='ls')
        assert isinstance(am, LS)
        assert isinstance(am.volatility, GARCH)
        am.__repr__()

        am = arch_model(self.y, mean='arx', lags=[1, 5, 22])
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='ar', lags=[1, 5, 22])
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='ar', lags=None)
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean='zero')
        assert isinstance(am, ZeroMean)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, vol='Harch')
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, HARCH)

        am = arch_model(self.y, vol='Constant')
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, ConstantVariance)

        am = arch_model(self.y, vol='arch')
        assert isinstance(am.volatility, ARCH)

        am = arch_model(self.y, vol='egarch')
        assert isinstance(am.volatility, EGARCH)

        with pytest.raises(ValueError):
            arch_model(self.y, mean='unknown')
        with pytest.raises(ValueError):
            arch_model(self.y, vol='unknown')
        with pytest.raises(ValueError):
            arch_model(self.y, dist='unknown')

        am.fit(disp=DISPLAY)
Ejemplo n.º 38
0
    def test_arch_model(self):
        am = arch_model(self.y)
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, GARCH)
        assert isinstance(am.distribution, Normal)

        am = arch_model(self.y, mean="harx", lags=[1, 5, 22])
        assert isinstance(am, HARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean="har", lags=[1, 5, 22])
        assert isinstance(am, HARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, self.x, mean="ls")
        assert isinstance(am, LS)
        assert isinstance(am.volatility, GARCH)
        am.__repr__()

        am = arch_model(self.y, mean="arx", lags=[1, 5, 22])
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean="ar", lags=[1, 5, 22])
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean="ar", lags=None)
        assert isinstance(am, ARX)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, mean="zero")
        assert isinstance(am, ZeroMean)
        assert isinstance(am.volatility, GARCH)

        am = arch_model(self.y, vol="Harch")
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, HARCH)

        am = arch_model(self.y, vol="Constant")
        assert isinstance(am, ConstantMean)
        assert isinstance(am.volatility, ConstantVariance)

        am = arch_model(self.y, vol="arch")
        assert isinstance(am.volatility, ARCH)

        am = arch_model(self.y, vol="egarch")
        assert isinstance(am.volatility, EGARCH)

        am = arch_model(self.y, vol="figarch")
        assert isinstance(am.volatility, FIGARCH)

        with pytest.raises(ValueError):
            arch_model(self.y, mean="unknown")
        with pytest.raises(ValueError):
            arch_model(self.y, vol="unknown")
        with pytest.raises(ValueError):
            arch_model(self.y, dist="unknown")

        am.fit(disp=DISPLAY)