Ejemplo n.º 1
0
def createYun():
    StopOrStartService(serviceFolder, "DynamicGSMRasterHW", "stop")
    StopOrStartService(serviceFolder, "DynamicGSMRasterLL", "stop")
    if (arcpy.Exists(CellThiessYunHW)):
        arcpy.Delete_management(CellThiessYunHW)
    if (arcpy.Exists(CellThiessYunLL)):
        arcpy.Delete_management(CellThiessYunLL)
    logging.info("PolygonToRaster_conversion HW")
    print "面转栅格"
    # Process: 面转栅格
    arcpy.PolygonToRaster_conversion(CellThiessFinal, "VOICE_TOTAL_TRAFFIC",
                                     CellThiessYunHW, "CELL_CENTER", "NONE",
                                     ".01")
    logging.info("CalculateStatistics_management HW")
    print "计算统计数据"
    # Process: 计算统计数据
    arcpy.CalculateStatistics_management(CellThiessYunHW, "1", "1", "",
                                         "OVERWRITE", "")
    logging.info("PolygonToRaster_conversion LL")
    arcpy.PolygonToRaster_conversion(CellThiessFinal, "UL_DL_FLOW",
                                     CellThiessYunLL, "CELL_CENTER", "NONE",
                                     ".01")
    logging.info("CalculateStatistics_management LL")
    print "计算统计数据"
    # Process: 计算统计数据
    arcpy.CalculateStatistics_management(CellThiessYunLL, "1", "1", "",
                                         "OVERWRITE", "")
    StopOrStartService(serviceFolder, "DynamicGSMRasterHW", "start")
    StopOrStartService(serviceFolder, "DynamicGSMRasterLL", "start")
def StudyAreaWatershed(output_workspace, dem_hydro, processes):
    # Check out the ArcGIS Spatial Analyst extension license
    arcpy.CheckOutExtension("Spatial")

    # Set environment variables
    arcpy.env.overwriteOutput = True
    arcpy.env.workspace = output_workspace
    arcpy.env.scratchWorkspace = output_workspace
    arcpy.env.cellSize = dem_hydro
    arcpy.env.parallelProcessingFactor = processes

    # List parameter values
    arcpy.AddMessage("Workspace: {}".format(arcpy.env.workspace))
    arcpy.AddMessage("DEM hydro: "
                     "{}".format(arcpy.Describe(dem_hydro).baseName))
    arcpy.AddMessage("processes: {}".format(processes))

    # Fill sinks
    arcpy.AddMessage("Beginning filling sinks...")
    dem_fill = arcpy.sa.Fill(in_surface_raster=dem_hydro)
    arcpy.AddMessage("Fill sinks complete.")

    # Calculate D8 flow direction (suitable for input into the Watershed tool)
    arcpy.AddMessage("Beginning flow direction...")
    flow_dir_d8 = arcpy.sa.FlowDirection(in_surface_raster=dem_fill,
                                         flow_direction_type="D8")
    flow_direction_d8 = os.path.join(output_workspace, "flow_direction_d8")
    flow_dir_d8.save(flow_direction_d8)

    # Calculate raster statistics and build pyramids
    arcpy.AddMessage("    Calculating statistics...")
    arcpy.CalculateStatistics_management(flow_direction_d8)
    arcpy.AddMessage("    Building pyraminds...")
    arcpy.BuildPyramids_management(flow_direction_d8)
    arcpy.AddMessage("Flow direction complete.")

    # Calculate flow accumulation
    arcpy.AddMessage("Beginning flow accumulation...")
    flow_accum_d8 = arcpy.sa.FlowAccumulation(flow_dir_d8,
                                              data_type="FLOAT",
                                              flow_direction_type="D8")
    flow_accumulation_d8 = os.path.join(output_workspace,
                                        "flow_accumulation_d8")
    flow_accum_d8.save(flow_accumulation_d8)

    # Calculate raster statistics and build pyramids
    arcpy.AddMessage("    Calculating statistics...")
    arcpy.CalculateStatistics_management(flow_accumulation_d8)
    arcpy.AddMessage("    Building pyraminds...")
    arcpy.BuildPyramids_management(flow_accumulation_d8)
    arcpy.AddMessage("Flow accumulation complete.")

    # Return
    arcpy.SetParameter(3, flow_accumulation_d8)
Ejemplo n.º 3
0
def setNull(imageList, nodata):
    if nodata is None:
        for i in imageList:
            rast = arcpy.Raster(i)
            rastNodata = rast[0,0]
            arcpy.management.SetRasterProperties(in_raster=i, nodata=[[1,rastNodata]])
            arcpy.CalculateStatistics_management(in_raster_dataset=i, x_skip_factor=100, y_skip_factor=100, skip_existing='OVERWRITE', ignore_values = [[1,rastNodata]])
    else:
        setNodata = nodata
        for i in imageList:
            arcpy.management.SetRasterProperties(in_raster=i, nodata=[[1,setNodata]])
            arcpy.CalculateStatistics_management(in_raster_dataset=i, x_skip_factor=100, y_skip_factor=100, skip_existing='OVERWRITE', ignore_values =[[1,setNodata]])
def RastToShp(rastinfile, year_day, flag): 
    """Creates the output extent to be used in the rest of the script. Allows all images to be snapped to
    a constant grid, for direct matrix to matrix comparison"""
    if flag == 'N':
        arcrast = TMP + year_day + "_recasttif.tif"
        tmptif = arcpy.Raster(rastinfile)
        tmptif.save(arcrast) #This step can be necessary for Arc tools to work properly on .tif files
        arcpy.CalculateStatistics_management(arcrast)
    if flag == 'Y':
        arcrast = TMP + year_day + "_recasttif.tif"
        arcpy.CopyRaster_management(rastinfile, arcrast, '', '-9999', '-9999')
    arcpy.env.extent = arcrast
    clipshp_tmp = TMP + year_day + "_clipshp_tmp.shp"
    EXT_data = arcpy.sa.Con(arcrast, 1, 0, '"Value" > 0') #Choose only areas with data
    tmp_ext = TMP + year_day + "_clipshp_con.tif"
    EXT_data.save(tmp_ext)
    del EXT_data
    arcpy.RasterToPolygon_conversion(tmp_ext, clipshp_tmp, "NO_SIMPLIFY", "Value") #Convert to Shpfile
    clipshp = TMP + year_day + "_ext.shp"
    clipshp_tmp2 = TMP + year_day + "_ext_tmp2.shp"
    arcpy.Select_analysis(clipshp_tmp, clipshp_tmp2, '"GRIDCODE" = 1')
    arcpy.Buffer_analysis(clipshp_tmp2, clipshp, "-2 Kilometers") #Negative buffer to remove edge effects

    cliprast = TMP + year_day + '_ext_tif.tif'
    arcpy.FeatureToRaster_conversion(clipshp, "GRIDCODE", cliprast, 30) #Convert back to TIF file to use as output extent
    
    arcpy.Delete_management(clipshp)
    arcpy.Delete_management(clipshp_tmp)
    arcpy.Delete_management(clipshp_tmp2)
    arcpy.Delete_management(tmp_ext)
    
    return cliprast, arcrast
Ejemplo n.º 5
0
def prepare_data(folder, dem, rail, road, river, lake):
    #create folder for temporary files
    try:
        os.makedirs(temp)
    except OSError:
        pass

    #initialize geoprocessing setting to same cellsize and same
    #extent as the DEM raster
    demfile = os.path.join(folder, dem)
    arcpy.CalculateStatistics_management(demfile)
    dem_raster = arcpy.sa.Raster(demfile)
    arcpy.AddMessage("DEM file:" + demfile)
    arcpy.env.extent = dem_raster.extent
    arcpy.env.snapRaster = dem_raster

    slopeCost = "cost_slope.tif"
    elevCost = "cost_elev.tif"
    create_cost_layer_dem(folder, dem_raster, slopeCost, elevCost)

    roadCost = "cost_road.tif"
    create_cost_layer(folder, dem_raster, road, roadCost, 2000)

    railCost = "cost_rail.tif"
    create_cost_layer(folder, dem_raster, rail, railCost, 2000)

    lakeCost = "cost_lake.tif"
    create_cost_layer(folder, dem_raster, lake, lakeCost, 2000)

    riverCost = "cost_river.tif"
    create_cost_layer(folder, dem_raster, river, riverCost, 2000)
Ejemplo n.º 6
0
def LCP(outputWeightCodedShp):
    """
	Source dir: costRasters
	Output dir: LCPs
	"""

    weightCode = outputWeightCodedShp.split(".")[0]
    source = paths.join(paths.costRasters, weightCode + ".asc")
    output = paths.join(paths.LCPs, outputWeightCodedShp)
    print "Finding least cost paths for weighting {}".format(weightCode)

    if arcpy.Exists(output) and not redoExistingOutput:
        print "{} already exists, leaving it as is.".format(output)
        return output

    paths.setEnv(env)
    if arcpy.Raster(source).minimum is None:
        print "    Calculating statistics for {}...".format(source)
        arcpy.CalculateStatistics_management(source,
                                             x_skip_factor=30,
                                             y_skip_factor=30)
    print "    Calculating cost distance and backlink..."
    costDist = sa.CostDistance(paths.destination,
                               source,
                               out_backlink_raster="backlink")
    print "    Finding least-cost path..."
    costPath = sa.CostPath(paths.sources, costDist, "backlink", "EACH_ZONE")

    print "    Vectorizing..."
    arcpy.RasterToPolyline_conversion(costPath, output, simplify="SIMPLIFY")

    arcpy.Delete_management("backlink")

    return output
Ejemplo n.º 7
0
def main(overwrite_flag=False):
    # Hardcoded for now, eventually read this from the INI
    workspace = r'Y:\justinh\Projects\SNWA\ee\images\spring_valley\landsat'

    arcpy.CheckOutExtension('Spatial')
    # arcpy.env.workspace = workspace
    arcpy.env.overwriteOutput = True
    arcpy.env.pyramid = 'PYRAMIDS 0'
    arcpy.env.compression = "LZW"
    arcpy.env.workspace = 'C:\Temp'
    arcpy.env.scratchWorkspace = 'C:\Temp'

    # year_list = range(1985, 2017)
    year_list = [1984]

    for year_str in os.listdir(workspace):
        if not re.match('^\d{4}$', year_str):
            continue
        elif int(year_str) not in year_list:
            continue
        logging.info(year_str)

        year_ws = os.path.join(workspace, year_str)
        for file_name in os.listdir(year_ws):
            file_path = os.path.join(year_ws, file_name)
            if (file_name.endswith('.ts.tif') or
                    file_name.endswith('.tasseled_cap.tif')):
                logging.info(file_name)
                arcpy.CalculateStatistics_management(file_path)
                try:
                    os.remove(file_path.replace('.tif', '.tif.xml'))
                except:
                    pass
            else:
                continue
def createRefDTMMosaic(in_md_path, out_md_path, v_unit):
    a = datetime.now()
    if arcpy.Exists(out_md_path):
        arcpy.AddMessage("Referenced mosaic dataset exists " + out_md_path)
    else:
        arcpy.CreateReferencedMosaicDataset_management(in_dataset=in_md_path, out_mosaic_dataset=out_md_path, where_clause="TypeID = 1")
        
        raster_function_path = Raster.Contour_Meters_function_chain_path
        v_unit = str(v_unit).upper()
        if v_unit.find("FEET") >= 0 or v_unit.find("FOOT") >= 0 or  v_unit.find("FT") >= 0:
            raster_function_path = Raster.Contour_IntlFeet_function_chain_path
            #if v_unit.find("INTL") >= 0 or v_unit.find("INTERNATIONAL") >= 0 or v_unit.find("STANDARD") >= 0 or v_unit.find("STD") >= 0:
            #    raster_function_path = Raster.Contour_IntlFeet_function_chain_path
            if v_unit.find("US") >= 0 or v_unit.find("SURVEY") >= 0:
                arcpy.AddMessage("Using US FOOT Raster Function")
                raster_function_path = Raster.Contour_Feet_function_chain_path
            else:
                arcpy.AddMessage("Using INT FOOT Raster Function")
        else:
            arcpy.AddMessage("Using METER Raster Function")
                
        arcpy.EditRasterFunction_management(in_mosaic_dataset=out_md_path, edit_mosaic_dataset_item="EDIT_MOSAIC_DATASET", edit_options="REPLACE", function_chain_definition=raster_function_path, location_function_name="")
        Utility.addToolMessages()
        
        arcpy.CalculateStatistics_management(in_raster_dataset=out_md_path, x_skip_factor=SKIP_FACTOR, y_skip_factor=SKIP_FACTOR, ignore_values="", skip_existing="OVERWRITE", area_of_interest="Feature Set")
    
        doTime(a, "Created referenced mosaic dataset " + out_md_path)
Ejemplo n.º 9
0
def calc_zonal_statistics(raster_file, polygon_file, zone_field, output_table):
    """ Calculate zonal statistics for a raster and vector and save result as .dbf and .csv files. 

    For each polygon in the vector file, calculate set of statistics from the raster (sum, mean, max, min, count). 
    Uses ArcPy ZonalStatisticsAsTable function. Requires an ArcGIS SpatialAnalyst licence.

    Parameters
    ----------
    raster_file : str
        Filename of raster file
    polygon_file : str
        Filename of vector file
    zone_field : str
        Name of field labelling the zones within vector file
    output_table : str
        Filename of output table (.dbf or .csv)

    Returns
    -------
    None
        Returns None

    """
    arcpy.CheckOutExtension("Spatial")
    arcpy.MakeFeatureLayer_management(polygon_file, "layer")
    layer = arcpy.mapping.Layer("layer")
    # First calculate statistics on raster.
    arcpy.CalculateStatistics_management(in_raster_dataset=raster_file)
    # set up .dbf and .csv filenames
    if output_table.endswith('.dbf'):
        _output_csv = os.path.splitext(output_table)[0]
        _output_csv = '{0}.csv'.format(_output_csv)
        _output_dbf = output_table
    elif output_table.endswith('.csv'):
        _output_dbf = os.path.splitext(output_table)[0]
        _output_dbf = '{0}.dbf'.format(_output_dbf)
        _output_csv = output_table
    else:
        _output_dbf = '{0}.dbf'.format(output_table)
        _output_csv = '{0}.csv'.format(output_table)
    _output_dbf = '{0}.dbf'.format(
        os.path.splitext(os.path.basename(raster_file))[0])
    if len(_output_dbf) > 12:
        _output_dbf = 'temp_output.dbf'
    arcpy.env.workspace = os.path.dirname(raster_file)
    _output_filename = os.path.basename(_output_dbf)
    # now calculate zonal statistics as table
    arcpy.sa.ZonalStatisticsAsTable(in_zone_data=layer,
                                    zone_field=zone_field,
                                    in_value_raster=raster_file,
                                    out_table=_output_dbf,
                                    ignore_nodata="DATA",
                                    statistics_type="ALL")
    if arcpy.Exists(layer):
        arcpy.Delete_management(layer)
    # convert to .csv
    csv_utils.convert_dbf_to_csv(
        os.path.join(os.path.dirname(raster_file), _output_dbf), _output_csv)

    return None
Ejemplo n.º 10
0
def image_to_raster(image, fgdb):
    print('\n\nConverting image to fgdb raster...')
    print('\t{0:<20}:\t{1}'.format('image', image))
    im = Image.open(image)
    imarray = np.array(im)
    print('\t{0:<20}:\t{1}'.format('imarray.size', imarray.size))
    print('\t{0:<20}:\t{1}'.format('imarray.shape', imarray.shape))
    unique = np.unique(imarray, return_counts=True)
    print('\t{0:<20}:\t{1}'.format('np.unique[0]', unique[0]))
    print('\t{0:<20}:\t{1}'.format('np.unique[1]', unique[1]))
    print('\t{0:<20}:\t{1}'.format('np.sum(np.unique[1])', np.sum(unique[1])))

    raster = os.path.basename(image)
    raster = os.path.splitext(raster)[0]
    raster = os.path.join(fgdb, raster)
    print('\t{0:<20}:\t{1}'.format('raster', raster))
    if arcpy.Exists(raster):
        arcpy.Delete_management(raster)
    # arcpy.CopyRaster_management(in_raster=image,
    #                             out_rasterdataset=raster,
    #                             pixel_type='8_BIT_UNSIGNED')
    sa_raster = arcpy.NumPyArrayToRaster(in_array=imarray,
                                  lower_left_corner=arcpy.Point(0.0, 0.0),
                                  x_cell_size=1000.0,
                                  y_cell_size=1000.0,
                                  value_to_nodata=None)
    sa_raster.save(raster)
    arcpy.CalculateStatistics_management(in_raster_dataset=raster)
    arcpy.BuildRasterAttributeTable_management(in_raster=raster,
                                               overwrite=True)
    describe_raster(raster)
    print('Converted image to fgdb raster.')
Ejemplo n.º 11
0
def makePDF(weightCode, mxdPath, outputDir, outHeight=2200):
    outName = weightCode + ".pdf"
    output = paths.joinNative(outputDir, outName)

    print "Rendering PDF for weight {}".format(weightCode)

    paths.setEnv(env)
    mxd = arcpy.mapping.MapDocument(mxdPath)
    df = arcpy.mapping.ListDataFrames(mxd, "")[0]

    costAsc = paths.join(paths.costRasters, weightCode + ".asc")
    if arcpy.Raster(costAsc).minimum is None:
        print "Calculating statistics for {}".format(costAsc)
        arcpy.CalculateStatistics_management(costAsc,
                                             x_skip_factor=30,
                                             y_skip_factor=30)

    # Copy rasters locally
    costGlob = paths.join(paths.costRasters, weightCode) + ".*"
    print "    Caching {}".format(costGlob)
    costCache = paths.cache(*glob.glob(costGlob), subdir="cost")

    print "    Replacing cost layer"
    costLayer = arcpy.mapping.ListLayers(mxd, "Cost", df)[0]
    costLayer.replaceDataSource(paths.temp + "\\cost", "NONE", weightCode)

    print "Writing cost to {}".format(output)
    arcpy.mapping.ExportToPDF(mxd, output, "PAGE_LAYOUT", resolution=400)

    del mxd

    paths.dropcache(costCache)
Ejemplo n.º 12
0
def getRasterStats(ProjectUID, ProjectID, curr_raster, raster_path, group,
                   elevation_type, raster_format, raster_PixelType, nodata,
                   horz_cs_name, horz_unit_name, horz_cs_wkid, vert_cs_name,
                   vert_unit_name, rows):
    # NOTE: Order here must match field list in CMDRConfig

    inMem_NameBound = "in_memory\MemBoundary"
    if arcpy.Exists(inMem_NameBound):
        arcpy.Delete_management(inMem_NameBound)
        Utility.addToolMessages()
    arcpy.RasterDomain_3d(raster_path, inMem_NameBound, "POLYGON")[0]
    Utility.addToolMessages()
    boundary = Utility.getExistingRecord(in_table=inMem_NameBound,
                                         field_names=['SHAPE@'],
                                         uidIndex=-1)[0][0]

    newRow = [
        ProjectUID, ProjectID, boundary, curr_raster, raster_path, group,
        elevation_type, raster_format, nodata, raster_PixelType
    ]

    arcpy.CalculateStatistics_management(in_raster_dataset=raster_path,
                                         skip_existing="OVERWRITE")
    cellSize = getRasterProperties(raster_path, newRow)

    newRow.append(horz_cs_name)
    newRow.append(horz_unit_name)
    newRow.append(horz_cs_wkid)
    newRow.append(vert_cs_name)
    newRow.append(vert_unit_name)
    newRow.append(None)  # Vert WKID, we can't know this in python

    rows.append(newRow)
    return cellSize
Ejemplo n.º 13
0
def makeOutcropRaster(dem, controlPoints, inc, sgdb):
    addMsgAndPrint('  making predicted outcrop raster')
    # set up raster environment
    arcpy.env.snapRaster = dem
    arcpy.env.cellSize = arcpy.Describe(dem).meanCellWidth
    arcpy.env.extent = controlPoints
    # TREND
    addMsgAndPrint('    calculating plane with TREND')
    outRaster = os.path.join(sgdb, 'xxxPlane')
    testAndDelete(outRaster)
    arcpy.Trend_3d(controlPoints, 'SHAPE', outRaster, '', 1, 'LINEAR')
    # subtract TREND plane from DEM
    addMsgAndPrint('    subtracting plane from DEM')
    intersectRaster1 = outRaster + '_i'
    testAndDelete(intersectRaster1)
    arcpy.Minus_3d(dem, outRaster, intersectRaster1)
    arcpy.CalculateStatistics_management(intersectRaster1)
    # classify results
    dH = math.tan(math.radians(inc)) * 2.0 * float(arcpy.env.cellSize)
    addMsgAndPrint('    classifying results, dH=' + str(dH))
    outCon = Con(intersectRaster1, 0, 1,
                 'VALUE > ' + str(dH) + ' OR VALUE < -' + str(dH))
    testAndDelete(outRaster)
    testAndDelete(intersectRaster1)
    return outCon
def build_stats(outfilename):
    try:
        # generate pyramids and statistics for final output
        gprint('BUILDING OUTPUT STATISTICS & PYRAMIDS' + '\n')
        arcpy.CalculateStatistics_management(outfilename, "1", "1", "#")
        arcpy.BuildPyramids_management(outfilename)
    except:
        pass
Ejemplo n.º 15
0
def main():
    # Hardcoded for now, eventually read this from the INI
    workspace = r'Y:\justinh\Projects\SNWA\ee\images\spring_valley\landsat'

    # year_list = range(1985, 2017)
    year_list = [1984]

    # Float32/Float64
    float_output_type = 'Float32'
    float_nodata_value = np.finfo(np.float32).min
    # int_output_type = 'Byte'
    # int_nodata_value = 255

    raster_re = re.compile('^\d{8}_\d{3}_\w{3}.(tasseled_cap|ts).tif$')

    for year_str in os.listdir(workspace):
        if not re.match('^\d{4}$', year_str):
            continue
        elif int(year_str) not in year_list:
            continue
        logging.info(year_str)

        year_ws = os.path.join(workspace, year_str)
        for file_name in os.listdir(year_ws):
            file_path = os.path.join(year_ws, file_name)
            temp_path = os.path.join(year_ws,
                                     file_name.replace('.tif', '.temp.tif'))
            if not raster_re.match(file_name):
                continue
            elif arcpy.sa.Raster(file_path).pixelType == 'F64':
                logging.info(file_name)
                # logging.debug(arcpy.sa.Raster(file_path).pixelType)

                # Make a 32 bit float copy
                subprocess.call([
                    'gdalwarp',
                    '-ot',
                    float_output_type,
                    '-overwrite',
                    '-of',
                    'GTiff',
                    '-co',
                    'COMPRESS=LZW',
                    # '-srcnodata', str(nodata_value),
                    '-dstnodata',
                    '{:f}'.format(float_nodata_value),
                    file_path,
                    temp_path
                ])
                # Remove the old one
                subprocess.call(['gdalmanage', 'delete', file_path])
                # Rename the file back to the original name
                subprocess.call(['gdalmanage', 'rename', temp_path, file_path])
                # Compute raster statistics
                arcpy.CalculateStatistics_management(file_path)
                os.remove(file_path.replace('.tif', '.tif.xml'))
def recalculate_raster_statistics():
    for ras in rasters_to_symbolize:
        # First some cleanup (we need to remove the previously displayed layer):
        remove_intermediary_layers([ras + "1"])

        # Now build the pyramids, and calculate the statistics on each rasters
        # on the drive. The Calculate_Statistics will also show the raster as a layer:
        print("Calculate Stats:" + ras)
        arcpy.BatchBuildPyramids_management(gdb_output + "\\" + ras)
        arcpy.CalculateStatistics_management(gdb_output + "\\" + ras)
Ejemplo n.º 17
0
    def FlowAccumulationDinf(self, ang, Qsurf, numpy_array_location):

        # Inputs
        inlyr = ang
        desc = arcpy.Describe(inlyr)
        ang=str(desc.catalogPath)
        arcpy.AddMessage("\nInput Dinf Flow Direction file: "+ang)

        # Execute flow direction and slope on the first day of model operation or at the end of each month
        output_asc = numpy_array_location + "\output_asc.asc"
        output_tiff = numpy_array_location + "\output_tif.tif"
        Qsurf_ascii = arcpy.RasterToASCII_conversion(Qsurf, output_asc)
        Qsurf_tiff = arcpy.ASCIIToRaster_conversion(Qsurf_ascii, output_tiff, "FLOAT")

        weightgrid= Qsurf_tiff
        if arcpy.Exists(weightgrid):
            desc = arcpy.Describe(weightgrid)
            wtgr=str(desc.catalogPath)
            arcpy.AddMessage("\nInput Weight Grid: "+wtgr)

        edgecontamination='false'
        arcpy.AddMessage("\nEdge Contamination: "+edgecontamination)

        # Input Number of Processes
        inputProc=str(8)
        arcpy.AddMessage("\nInput Number of Processes: "+inputProc)

        # Output
        sca = str(numpy_array_location + "\osca.tif")
        arcpy.AddMessage("\nOutput Dinf Specific Catchment Area Grid: "+sca)

        # Construct command
        cmd = 'mpiexec -n ' + inputProc + ' AreaDinf -ang ' + '"' + ang + '"' + ' -sca ' + '"' + sca + '"'

        if arcpy.Exists(weightgrid):
            cmd = cmd + ' -wg ' + '"' + wtgr + '"'
        if edgecontamination == 'false':
            cmd = cmd + ' -nc '
    
        arcpy.AddMessage("\nCommand Line: "+cmd)

        # Submit command to operating system
        os.system(cmd)

        # Capture the contents of shell command and print it to the arcgis dialog box
        process=subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
        arcpy.AddMessage('\nProcess started:\n')
        for line in process.stdout.readlines():
            arcpy.AddMessage(line)

        # Calculate statistics on the output so that it displays properly
        arcpy.AddMessage('Executing: Calculate Statistics\n')
        arcpy.CalculateStatistics_management(sca)
        
        return sca
Ejemplo n.º 18
0
def build_stats(raster):
    """Builds statistics and pyramids for output rasters"""
    try:
        arcpy.CalculateStatistics_management(raster, "1", "1", "#")
    except Exception:
        gprint('Statistics failed. They can still be calculated manually.')
    try:
        arcpy.BuildPyramids_management(raster)
    except Exception:
        gprint('Pyramids failed. They can still be built manually.')
    return
Ejemplo n.º 19
0
def get_soc0_999(workspace, in_raster, value_table, out_raster):
    # Set environment settings
    env.workspace = workspace

    # Set local variables
    field_name = 'mukey'
    lookup_field = 'soc0_999'

    arcpy.JoinField_management(in_raster, field_name, value_table, field_name,
                               lookup_field)
    #arcpy.AddJoin_management(in_raster, field_name, value_table, field_name)
    outraster = Lookup(in_raster, lookup_field)
    arcpy.CalculateStatistics_management(outraster)
    outraster.save(out_raster)
    arcpy.BuildPyramids_management(out_raster)
Ejemplo n.º 20
0
    def test_raster(self, ref_file, in_file, rep_file):
        """
        Logs differences in raster files.

        Parameters:
            ref_file -- reference raster file
            in_file  -- input raster file
            rep_file -- report file

        Return value:
            Logs resulting difference in raster files, error statement otherwise.
        """

        try:
            logging.info('')
            logging.info('          Executing: EGSUtility.test_raster')
            logging.info('          Compare ref: ' + ref_file)
            logging.info('          Compare product: ' + in_file)
            logging.info('          Report file: ' + rep_file)
            if os.path.exists(rep_file):
                os.remove(rep_file)
            arcpy.CalculateStatistics_management(ref_file, "", "", "",\
                                     "SKIP_EXISTING")
            arcpy.CalculateStatistics_management(in_file, "", "", "",\
                                     "SKIP_EXISTING")
            arcpy.RasterCompare_management(ref_file,in_file,"RASTER_DATASET",\
                          "","CONTINUE_COMPARE",rep_file,"","","")

            # open results file, output results to log file
            with open(rep_file) as infile:
                for line in infile:
                    logging.info(line)
                infile.close()

        except ValueError as e:
            self.error('test_raster(): {:s}'.format(e))
def streamBurning(DEM_orig, scratch_gdb, seg_network_a, home, home_name):
    print("stream burning process")
    arcpy.CalculateStatistics_management(DEM_orig)

    dem_orig_b = Con(IsNull(DEM_orig), 0, DEM_orig)
    dem_orig_b.save(scratch_gdb + "/DEM_square")

    # set up river network raster
    network_raster = scratch_gdb + "/network_raster"

    arcpy.env.extent = dem_orig_b
    arcpy.env.cellsize = dem_orig_b
    arcpy.env.snapRaster = dem_orig_b
    arcpy.env.outputCoordinateSystem = dem_orig_b

    print('convert network to raster')
    net_fields = [f.name for f in arcpy.ListFields(seg_network_a)]
    if "burn_val" in net_fields:
        arcpy.DeleteField_management(seg_network_a, "burn_val")
    del net_fields
    arcpy.AddField_management(seg_network_a, "burn_val", "SHORT")
    arcpy.CalculateField_management(seg_network_a, "burn_val", "10")  #

    arcpy.FeatureToRaster_conversion(
        seg_network_a, "burn_val", network_raster,
        dem_orig_b)  # THINK IT IS WORTH CHANGING THE ATTRIBUTE VALUE

    network_raster_a = Con(
        IsNull(network_raster), 0,
        30)  # changed to 30 to see if it improves stream ordering
    network_raster_a.save(scratch_gdb + "/net_ras_fin")
    arcpy.ResetEnvironments()

    # This is just a map algebra thing to replace the stuff above that uses numpy (the numpy stuff works but is
    # limited in terms of how much it can process.
    print("stream burning DEM")
    rivers_ting = Raster(scratch_gdb + "/net_ras_fin")
    dem_ting = Raster(scratch_gdb + "/DEM_square")

    stream_burn_dem_a = dem_ting - rivers_ting
    stream_burn_dem_a.save(scratch_gdb + "/raster_burn")

    sb_DEM = os.path.join(home, "{0}strBurndDEm.tif".format(home_name))

    arcpy.CopyRaster_management(scratch_gdb + "/raster_burn", sb_DEM)

    print("stream burning complete")
    return stream_burn_dem_a, network_raster, sb_DEM
Ejemplo n.º 22
0
def weightedCostRaster(outputCodeName, layerOrder=None):
    """
	Source dir: preprocessed
	Output dir: costRasters

	outputCodeName: 1311011.asc where value of each digit |-->  weight
									  index of each digit |-->  layer index in given list
																(so use the same layer order every time in every function!)
	
	layerOrder: ['agl_resis', 'bcmp_resis', 'bestp_resis', ...] --- layer names in order that corresponds to outputCode
	"""

    if layerOrder is None:
        print "No layer order specified, that's kinda important."
        return

    sources = layerOrder
    weights = map(int, list(outputCodeName.replace(".asc", "")))

    # outputCode = "".join(map(str, weights))
    print "Making weighted cost raster {}".format(outputCodeName)

    paths.setEnv(env)

    output = paths.join(paths.costRasters, outputCodeName)
    if arcpy.Exists(output) and not redoExistingOutput:
        print "{} already exists, leaving it as is.".format(output)
        return output

    active = [(paths.join(paths.preprocessed, source), weight)
              for source, weight in zip(sources, weights) if weight > 0]
    if len(active) <= 1:
        # TODO: add the straight-line-distance raster, so least cost paths don't freak out?
        pass

    costRas = sa.CreateConstantRaster(0.0001, "FLOAT", env.cellSize,
                                      env.extent)
    for source, weight in active:
        costRas += sa.Raster(source) * weight

    arcpy.RasterToASCII_conversion(costRas, output)
    arcpy.CalculateStatistics_management(output,
                                         x_skip_factor=30,
                                         y_skip_factor=30)

    return output
    def taglio_raster_inondazione_aggregato(self):

        #CUT and SAVE Flooded areas within the admin2 area
        try:

            flood_out = self.dirOut + self.admin + "_agg.tif"
            arcpy.gp.ExtractByMask_sa(self.flood_aggregated, admin_vect,
                                      flood_out)
        except:
            pass
            return "NoFloodRaster"

            arcpy.CalculateStatistics_management(flood_out)
        try:
            return "Flood"
        except:
            pass
            return "NoFlood"
Ejemplo n.º 24
0
def update_mxd_from_metadata(file_name, metadata, verify=False):
    """
    :param file_name: A path to the mxd file.
    :param metadata: The metadata providing the names, filepaths, and types to add to the mxd.
    :return: The original file.
    """
    mxd = arcpy.mapping.MapDocument(os.path.abspath(file_name))
    df = mxd.activeDataFrame
    version = get_version()
    for layer_name, layer_info in metadata['data_sources'].items():
        file_path = os.path.abspath(os.path.join(BASE_DIR, layer_info['file_path']))
        # If possible calculate the statistics now so that they are correct when opening arcmap.
        try:
            print(("Calculating statistics for the file {0}...".format(file_path)))
            arcpy.CalculateStatistics_management(file_path)
        except Exception as e:
            print(e)
        layer_file = get_layer_file(layer_info['type'], version)
        if not layer_file:
            print((
                "Skipping layer {0} because the file type is not supported for ArcMap {1}".format(layer_name, version)))
            if version == '10.5':
                print("However with your version of ArcMap you can still drag and drop this layer onto the Map.")
            continue
        layer_from_file = arcpy.mapping.Layer(layer_file)
        layer_from_file.name = layer_info['name']
        print(('Adding layer: {0}...'.format(layer_from_file.name)))
        arcpy.mapping.AddLayer(df, layer_from_file, "TOP")
        # Get instance of layer from MXD, not the template file.
        del layer_from_file
        layer = arcpy.mapping.ListLayers(mxd)[0]
        update_layer(layer, file_path, verify=verify)

    logger.debug('Getting dataframes...')
    df = mxd.activeDataFrame

    df.extent = arcpy.Extent(*metadata['bbox'])

    mxd.activeView = df.name
    arcpy.RefreshActiveView()
    mxd.save()
    del mxd  # remove handle on file
    return file_name
Ejemplo n.º 25
0
def raster_properties(input_raster, attribute='MEAN'):
    """ Wrapper for GetRasterProperties_management which does the right thing."""

    # make sure statistics exist, set them if they don't.
    arcpy.CalculateStatistics_management(
        input_raster, "1", "1", "#", "SKIP_EXISTING")

    attr_obj = arcpy.GetRasterProperties_management(input_raster, attribute)
    attr_val = attr_obj.getOutput(0)
    numeric_attrs = ['MINIMUM', 'MAXIMUM', 'MEAN', 'STD', 'CELLSIZEX', 'CELLSIZEY']

    if config.debug:
        msg(locale.getlocale())

    if attribute in numeric_attrs:
        # convert these to locale independent floating point numbers
        value = locale.atof(attr_val)
    else:
        # leave anything else untouched
        value = attr_val
    return value
Ejemplo n.º 26
0
def getstat(myraster, what="MINIMUM"):
    myraster_ = arcpy.Describe(myraster)
    myraster = myraster_.catalogPath

    try:
        raster_st = arcpy.GetRasterProperties_management(myraster, what)
        temp1 = raster_st.getOutput(0)
        temp2 = temp1.replace(",", ".")
        raster_st = float(temp2)
        return raster_st

    except arcpy.ExecuteError:
        msgs = arcpy.GetMessages(2)
        error_code = str(msgs).replace(":", "").split(" ")[1]
        if error_code == "001100":
            arcpy.CalculateStatistics_management(myraster, "1", "1", "",
                                                 "OVERWRITE", "")
            raster_st = arcpy.GetRasterProperties_management(myraster, what)
            temp1 = raster_st.getOutput(0)
            temp2 = temp1.replace(",", ".")
            raster_st = float(temp2)
            return raster_st
Ejemplo n.º 27
0
def meanCalculationWithExtraction(num, fileList):
    os.mkdir(path + "Middle\\TEMP" +
             str(num))  # A MASSIVE C**K TO THE F**KING ArcGIS!
    env.workspace = path + "Middle\\TEMP" + str(
        num)  # A MASSIVE C**K TO THE F**KING ArcGIS!
    rasters = fileList
    file = path + "Middle\\ReprojectedRasters\\" + str(rasters[num])
    raster = ExtractByMask(file, path + "Base\\Base.shp")
    raster.save(path + "Results\\" +
                str(str(rasters[num]).replace(
                    "GlobSnow_SWE_L3A_", "")).replace("_v2.0.hdf.tif", "") +
                ".tif")
    arcpy.CalculateStatistics_management(raster, "1", "1")
    meanResult = arcpy.GetRasterProperties_management(raster, "MEAN")
    meanRes = meanResult.getOutput(0)
    shutil.rmtree(path + "Middle\\TEMP" +
                  str(num))  # A MASSIVE C**K TO THE F**KING ArcGIS!
    return [
        str(str(rasters[num]).replace("GlobSnow_SWE_L3A_",
                                      "")).replace("_v2.0.hdf.tif", ""),
        str(meanRes)
    ]
Ejemplo n.º 28
0
def main():
    arcpy.CheckOutExtension('Spatial')
    arcpy.env.workspace = this_root+'\\AVHRR_clipped\\'
    rasters = arcpy.ListRasters('*.tif*')
    # print(rasters)
    time_init = time.time()
    flag = 0
    for raster in rasters:
        # Save temp raster to disk with new name
        start = time.time()
        ras = sa.Raster(raster)
        arcpy.CalculateStatistics_management(ras)
        max = ras.maximum
        fvc = ras/8000.
        fvc = sa.Con(fvc, 0, fvc, "VALUE < 0")
        fvc = sa.Con(fvc, 1, fvc, "VALUE > 1")
        fvc.save(this_root+'AVHRR_fvc\\'+raster)
        end = time.time()
        logger.process_bar(flag,len(rasters),time_init,start,end,raster)
        flag += 1
        # break

    pass
def ReloadMD():
    # Empty the mosaic dataset prior to reloading it
    arcpy.AddMessage("Removing previous forecast data from mosaic dataset...")
    arcpy.RemoveRastersFromMosaicDataset_management(inputMD, "1=1")
    # Add the rasters to the mosaic dataset
    arcpy.AddMessage("Adding new forecast data to mosaic dataset...")
    arcpy.AddRastersToMosaicDataset_management(inputMD, "Raster Dataset", forecastGDBPath)
    # Check something was imported
    result = int(arcpy.GetCount_management(inputMD).getOutput(0))
    if result > 0:
        # Re-calculate statistics on the mosaic dataset
        arcpy.AddMessage("Calculating statistics on the newly loaded mosaic dataset")
        arcpy.CalculateStatistics_management(inputMD)
        # Re-build overviews on the mosaic dataset
        #arcpy.AddMessage("Building overviews on the mosaic dataset")
        #arcpy.BuildOverviews_management(inputMD)
        # Calculate the time fields on the mosaic dataset
        arcpy.AddMessage("Calculating the time fields on the mosaic dataset")
        locale.setlocale(locale.LC_TIME, '')
        mdLayer = "mdLayer"
        arcpy.MakeMosaicLayer_management(inputMD, mdLayer, "Category = 1") # Leave out overviews - only calculate fields on primary rasters
        arcpy.CalculateField_management(mdLayer, dateForecastImportedField, """time.strftime("%c")""", "PYTHON","#")
        arcpy.CalculateField_management(mdLayer, dateForecastEffectiveFromField, """time.strftime("%c", time.strptime(!Name!,""" + "\"" + weatherName + """%Y%m%dT%H%M"))""", "PYTHON", "#")
        arcpy.CalculateField_management(mdLayer, dateForecastEffectiveToField, "!" + dateForecastEffectiveFromField + "!", "PYTHON", "#")
if arcpy.Exists(ogrfile):
    cmd = cmd + ' -o ' + '"' + shfl + '"'
if delineate == 'true':
    cmd = cmd + ' -sw '

arcpy.AddMessage("\nCommand Line: " + cmd)

# Submit command to operating system
os.system(cmd)

# Capture the contents of shell command and print it to the arcgis dialog box
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
#arcpy.AddMessage('\nProcess started:\n')
message = "\n"
for line in process.stdout.readlines():
    message = message + line
arcpy.AddMessage(message)

# Calculate statistics on the output so that it displays properly
arcpy.AddMessage('Calculate Statistics\n')
arcpy.CalculateStatistics_management(ord)
#arcpy.DefineProjection_management(net, coord_sys)

arcpy.CalculateStatistics_management(w)
# remove converted json file
if arcpy.Exists(ogrfile):
    extn_json = os.path.splitext(shfl)[
        1]  # get extension of the converted json file
    if extn_json == ".json":
        os.remove(shfl)