Ejemplo n.º 1
0
def beta_plane_gyre_n_layer():
    print "Running n-layer beta-plane gyre example"
    xlen = 1e6
    ylen = 2e6
    nx = 100
    ny = 200
    layers = 2
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    def wind(_, Y):
        
        wind_forcing = 0.05 * (1 - np.cos(2*np.pi * Y/np.max(grid.y)))

        plt.figure()
        plt.plot(Y[:,1]/1e3, wind_forcing[:,1])
        plt.xlabel('Latitude (km)')
        plt.ylabel('Wind forcing (N/m^2)')
        plt.savefig('twin_gyre_wind_forcing.png', 
            bbox_inches='tight', dpi=200)
        plt.close()

        return wind_forcing

    with working_directory(p.join(self_path, "n_layer/beta_plane_gyre")):
        drv.simulate(zonalWindFile=[wind],
                     exe=executable,
                     nx=nx, ny=ny, layers=layers,
                     dx=xlen/nx, dy=ylen/ny,
                     nTimeSteps = 20001, dumpFreq = 6e5, avFreq = 48e5
                     # NB: this takes quite a long time to run.
                     )
        with working_directory("figures"):
            plt_output(grid, 'n-layer-twin-gyre', colour_lim=20)
Ejemplo n.º 2
0
def beta_plane_gyre_red_grav():
    print "Running reduced gravity beta-plane gyre example"
    xlen = 1e6
    ylen = 2e6
    nx = 100 
    ny = 200
    layers = 1 # also set in aronnax.conf file
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    def wind(_, Y):
        
        wind_forcing = 0.05 * (1 - np.cos(2*np.pi * Y/np.max(grid.y)))

        plt.figure()
        plt.plot(Y[:,1]/1e3, wind_forcing[:,1])
        plt.xlabel('y coordinate (km)')
        plt.ylabel('Wind forcing (N/m^2)')
        plt.savefig('twin_gyre_wind_forcing.png', 
            bbox_inches='tight', dpi=200)
        plt.close()

        return wind_forcing

    with working_directory(p.join(self_path,
                            "reduced_gravity/beta_plane_gyre")):
        drv.simulate(zonalWindFile=[wind],
                     nx=nx, ny=ny,
                     dx=xlen/nx, dy=ylen/ny,
                     exe=executable)
        with working_directory("figures"):
            plt_output(grid, 'red-grav-twin-gyre', colour_lim=20)
Ejemplo n.º 3
0
def run_davis_control_final_five(nx,
                                 ny,
                                 layers,
                                 nTimeSteps,
                                 dt,
                                 simulation=None):

    #assert layers == 1
    xlen = 1530e3
    ylen = 2730e3
    dx = xlen / nx
    dy = ylen / ny

    grid = aro.Grid(nx, ny, layers, dx, dy)

    with working_directory(
            p.join(self_path, "Davis_et_al_2014/{0}".format(simulation))):
        drv.simulate(initHfile='../final_state_of_control/final.h.0001244161',
                     initUfile='../final_state_of_control/final.u.0001244161',
                     initVfile='../final_state_of_control/final.v.0001244161',
                     zonalWindFile=[davis_wind_x],
                     meridionalWindFile=[davis_wind_y],
                     wind_mag_time_series_file=[davis_wind_time_series],
                     wetMaskFile=[davis_wetmask],
                     spongeHTimeScaleFile=[davis_sponge_h_timescale],
                     spongeHFile=[davis_sponge_h],
                     nx=nx,
                     ny=ny,
                     dx=dx,
                     dy=dy,
                     exe='aronnax_core',
                     dt=dt,
                     dumpFreq=int(86400. * 5.),
                     nTimeSteps=nTimeSteps)
Ejemplo n.º 4
0
def benchmark_parallel_gaussian_bump_save(n_procs):
    run_time = np.zeros(len(n_procs))
    nx = 120

    def bump(X, Y):
        return 500. + 20 * np.exp(-((6e5 - X)**2 + (5e5 - Y)**2) /
                                  (2 * 1e5**2))

    with working_directory(p.join(self_path, "beta_plane_bump")):
        aro_exec = "aronnax_external_solver"
        for counter, nProcX in enumerate(n_procs):
            if nProcX == 1:
                run_time[counter] = aro.simulate(
                    exe=aro_exec,
                    initHfile=[bump, lambda X, Y: 2000. - bump(X, Y)],
                    nx=nx,
                    ny=nx)
            else:
                run_time[counter] = aro.simulate(
                    exe=aro_exec,
                    initHfile=[bump, lambda X, Y: 2000. - bump(X, Y)],
                    nx=nx,
                    ny=nx,
                    nProcX=nProcX)

        with open("mpi_times.pkl", "wb") as f:
            pkl.dump((n_procs, run_time), f)
Ejemplo n.º 5
0
def beta_plane_bump_n_layer():
    print "Running n-layer beta-plane bump example"
    xlen = 1e6
    ylen = 1e6
    nx = 100
    ny = 100
    layers = 2 # also set in aronnax.conf file
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    with working_directory(p.join(self_path, "n_layer/beta_plane_bump")):
        drv.simulate(initHfile=[bump, lambda X, Y: 2000. - bump(X, Y)],
                     exe=executable,
                     nx=nx, ny=ny,
                     dx=xlen/nx, dy=ylen/ny)
        with working_directory("figures"):
            plt_output(grid, 'n-layer-bump')
Ejemplo n.º 6
0
def benchmark_gaussian_bump_red_grav_plot():
    with working_directory(p.join(self_path, "beta_plane_bump_red_grav")):
        with open("times.pkl", "r") as f:
            (grid_points, run_time_O1, run_time_Ofast) = pkl.load(f)

        plt.figure()
        plt.loglog(grid_points,
                   run_time_O1 * scale_factor,
                   '-*',
                   label='aronnax_test')
        plt.loglog(grid_points,
                   run_time_Ofast * scale_factor,
                   '-*',
                   label='aronnax_core')
        scale = scale_factor * run_time_O1[-7] / (grid_points[-7]**2)
        plt.loglog(grid_points,
                   scale * grid_points**2,
                   ':',
                   label='O(nx**2)',
                   color='black',
                   linewidth=0.5)
        plt.legend()
        plt.xlabel('Resolution (grid cells on one side)')
        plt.ylabel('Avg time per integration step (ms)')
        plt.title(
            'Runtime scaling of a 1.5-layer Aronnax simulation on a square grid'
        )
        plt.savefig('beta_plane_bump_red_grav_scaling.png', dpi=150)
Ejemplo n.º 7
0
def benchmark_gaussian_bump_red_grav_save(grid_points):
    run_time_O1 = np.zeros(len(grid_points))
    run_time_Ofast = np.zeros(len(grid_points))

    def bump(X, Y):
        return 500. + 20 * np.exp(-((6e5 - X)**2 + (5e5 - Y)**2) /
                                  (2 * 1e5**2))

    with working_directory(p.join(self_path, "beta_plane_bump_red_grav")):
        aro_exec = "aronnax_test"
        for counter, nx in enumerate(grid_points):
            run_time_O1[counter] = aro.simulate(exe=aro_exec,
                                                initHfile=[bump],
                                                nx=nx,
                                                ny=nx)

        aro_exec = "aronnax_core"
        for counter, nx in enumerate(grid_points):
            run_time_Ofast[counter] = aro.simulate(exe=aro_exec,
                                                   initHfile=[bump],
                                                   nx=nx,
                                                   ny=nx)

        with open("times.pkl", "w") as f:
            pkl.dump((grid_points, run_time_O1, run_time_Ofast), f)
Ejemplo n.º 8
0
def benchmark_parallel_gaussian_bump_plot():
    with working_directory(p.join(self_path, "beta_plane_bump")):
        with open("mpi_times.pkl", "rb") as f:
            (n_procs, run_time) = pkl.load(f)

        plt.figure()
        plt.loglog(n_procs,
                   run_time * scale_factor,
                   '-*',
                   label='aronnax_external_solver')

        scale = scale_factor * run_time[0]
        plt.loglog(n_procs,
                   scale / n_procs,
                   ':',
                   label='O(1/n)',
                   color='black',
                   linewidth=0.5)
        plt.legend()
        plt.xlabel('Number of processors')
        plt.ylabel('Avg time per integration step (ms)')
        plt.title(
            'Runtime scaling of a 2-layer Aronnax simulation\n on a square grid'
        )
        plt.savefig('beta_plane_bump_mpi_scaling.png',
                    dpi=150,
                    bbox_inches='tight')
Ejemplo n.º 9
0
def do_n_layer(nx, aro_build, perf):
    with working_directory(p.join(self_path, "beta_plane_bump")):
        aro.simulate(exe=aro_build,
                     nx=nx,
                     ny=nx,
                     perf=perf,
                     initHfile=[bump, lambda X, Y: 2000. - bump(X, Y)])
Ejemplo n.º 10
0
def beta_plane_bump_red_grav():
    print "Running reduced gravity beta-plane bump example"
    xlen = 1e6
    ylen = 1e6
    nx = 100
    ny = 100
    layers = 1 # also set in aronnax.conf file
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    with working_directory(p.join(self_path,
                            "reduced_gravity/beta_plane_bump")):
        drv.simulate(initHfile=[bump],
                     exe=executable,
                     nx=nx, ny=ny,
                     dx=xlen/nx, dy=ylen/ny)
        with working_directory("figures"):
            plt_output(grid, 'red-grav-bump')
Ejemplo n.º 11
0
def test_vertical_thickness_diffusion_Hypre_3_layers():
    nx = 2
    ny = 2
    layers = 3

    dx = 1e4
    dy = 1e4

    grid = aro.Grid(nx, ny, layers, dx, dy)

    kv = 1e-5
    initH = [10., 100., 10.]

    def wetmask(X, Y):
        mask = np.ones(X.shape, dtype=np.float64)
        return mask

    # 2 years
    dt = 200.
    nTimeSteps = int(0.25 * 365 * 86400 / dt)
    diagFreq = nTimeSteps * dt / 50.

    with working_directory(p.join(self_path, "vertical_diffusion")):
        drv.simulate(initHfile=[10., 100., 10.],
                     nx=nx,
                     ny=ny,
                     dx=dx,
                     dy=dy,
                     layers=3,
                     exe="aronnax_external_solver_test",
                     wetMaskFile=[wetmask],
                     depthFile=[120.],
                     fUfile=[-1e-4],
                     fVfile=[-1e-4],
                     kv=kv,
                     dt=dt,
                     nTimeSteps=nTimeSteps,
                     diagFreq=diagFreq,
                     dumpFreq=1e9,
                     RedGrav=0)

        simuated_h_evo = np.loadtxt('output/diagnostic.h.csv',
                                    delimiter=',',
                                    skiprows=1,
                                    usecols=(0, 2, 6, 10))
        expected_h_evo = np.sqrt(simuated_h_evo[:, 0] * dt * kv * 2. +
                                 initH[0]**2)

        # plt.plot(simuated_h_evo[:,0]*dt, expected_h_evo, label='expected')
        # plt.plot(simuated_h_evo[:,0]*dt, simuated_h_evo[:,1], label='simulated top')
        # plt.plot(simuated_h_evo[:,0]*dt, simuated_h_evo[:,2], label='simulated mid')
        # plt.plot(simuated_h_evo[:,0]*dt, simuated_h_evo[:,3], label='simulated bottom')
        # plt.legend()
        # plt.savefig('h_evo.pdf')
        assert np.max(
            abs(simuated_h_evo[:, 1] - simuated_h_evo[:, 3])) < 0.0005
Ejemplo n.º 12
0
def test_f_plane():
    xlen = 1e6
    ylen = 1e6
    with working_directory(p.join(self_path, "f_plane")):
        drv.simulate(exe=test_executable,
                     nx=10,
                     ny=10,
                     dx=xlen / 10,
                     dy=ylen / 10)
        assert_outputs_close(10, 10, 2, 1e-15)
        assert_volume_conservation(10, 10, 2, 1e-5)
        assert_diagnostics_similar(['h'], 1e-10)
Ejemplo n.º 13
0
def test_gaussian_bump_red_grav():
    xlen = 1e6
    ylen = 1e6
    with working_directory(p.join(self_path, "beta_plane_bump_red_grav")):
        drv.simulate(initHfile=[bump],
                     exe=test_executable,
                     nx=10,
                     ny=10,
                     dx=xlen / 10,
                     dy=ylen / 10)
        assert_outputs_close(10, 10, 1, 1.5e-13)
        assert_volume_conservation(10, 10, 1, 1e-5)
Ejemplo n.º 14
0
def test_gaussian_bump():
    xlen = 1e6
    ylen = 1e6
    with working_directory(p.join(self_path, "beta_plane_bump")):
        drv.simulate(initHfile=[bump, lambda X, Y: 2000. - bump(X, Y)],
                     nx=10,
                     ny=10,
                     exe=test_executable,
                     dx=xlen / 10,
                     dy=ylen / 10)
        assert_outputs_close(10, 10, 2, 2e-13)
        assert_volume_conservation(10, 10, 2, 1e-5)
Ejemplo n.º 15
0
def test_beta_plane_gyre_free_surf_Hypre_MPI(nProcX=1, nProcY=1):
    xlen = 1e6
    ylen = 2e6
    nx = 10
    ny = 20
    layers = 2
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    def wind(_, Y):
        return 0.05 * (1 - np.cos(2 * np.pi * Y / np.max(grid.y)))

    with working_directory(p.join(self_path,
                                  "beta_plane_gyre_free_surf_hypre")):
        if (nProcX == 1 and nProcY == 1):
            drv.simulate(zonalWindFile=[wind],
                         valgrind=False,
                         nx=nx,
                         ny=ny,
                         exe='aronnax_external_solver_test',
                         dx=xlen / nx,
                         dy=ylen / ny)
        elif (nProcX != 1 and nProcY == 1):
            drv.simulate(zonalWindFile=[wind],
                         valgrind=False,
                         nx=nx,
                         ny=ny,
                         exe='aronnax_external_solver_test',
                         dx=xlen / nx,
                         dy=ylen / ny,
                         nProcX=nProcX)
        elif (nProcX == 1 and nProcY != 1):
            drv.simulate(zonalWindFile=[wind],
                         valgrind=False,
                         nx=nx,
                         ny=ny,
                         exe='aronnax_external_solver_test',
                         dx=xlen / nx,
                         dy=ylen / ny,
                         nProcY=nProcY)
        else:
            drv.simulate(zonalWindFile=[wind],
                         valgrind=False,
                         nx=nx,
                         ny=ny,
                         exe='aronnax_external_solver_test',
                         dx=xlen / nx,
                         dy=ylen / ny,
                         nProcX=nProcX,
                         nProcY=nProcY)

        assert_outputs_close(nx, ny, layers, 3e-12)
        assert_volume_conservation(nx, ny, layers, 1e-5)
        assert_diagnostics_similar(['h', 'u', 'v', 'eta'], 1e-8)
Ejemplo n.º 16
0
def test_relative_wind_upwind_advection():
    nx = 320
    ny = 320
    layers = 1
    xlen = 1280e3
    ylen = 1280e3
    dx = xlen / nx
    dy = ylen / ny

    grid = aro.Grid(nx, ny, layers, dx, dy)

    def wetmask(X, Y):
        # water everywhere, doubly periodic
        wetmask = np.ones(X.shape, dtype=np.float64)
        return wetmask

    def wind_x(X, Y):
        rMx = 300e3  # radius of circle where Max wind stress
        r = np.sqrt((Y - 640e3)**2 + (X - 640e3)**2)
        theta = np.arctan2(Y - 640e3, X - 640e3)
        tau = np.sin(np.pi * r / rMx / 2.)
        tau_x = tau * np.sin(theta)
        tau_x[r > 2. * rMx] = 0

        return tau_x

    def wind_y(X, Y):
        rMx = 300e3  # radius of circle where Max wind stress
        r = np.sqrt((Y - 640e3)**2 + (X - 640e3)**2)
        theta = np.arctan2(Y - 640e3, X - 640e3)
        tau = np.sin(np.pi * r / rMx / 2.)
        tau_y = -tau * np.cos(theta)
        tau_y[r > 2. * rMx] = 0
        return tau_y

    with working_directory(p.join(self_path, "relative_wind")):
        drv.simulate(initHfile=[400],
                     zonalWindFile=[wind_x],
                     meridionalWindFile=[wind_y],
                     wind_mag_time_series_file=[0.08],
                     exe=test_executable,
                     wetMaskFile=[wetmask],
                     nx=nx,
                     ny=ny,
                     dx=dx,
                     dy=dy,
                     hAdvecScheme=2)
        assert_outputs_close(nx, ny, layers, 3e-11)
        assert_volume_conservation(nx, ny, layers, 1e-5)
        assert_diagnostics_similar(['h', 'u', 'v'], 1e-10)
Ejemplo n.º 17
0
def test_gaussian_bump_red_grav_debug_test():
    xlen = 1e6
    ylen = 1e6
    with working_directory(
            p.join(self_path, "beta_plane_bump_red_grav_debug_test")):
        drv.simulate(initHfile=[bump],
                     exe=test_executable,
                     nx=10,
                     ny=10,
                     dx=xlen / 10,
                     dy=ylen / 10,
                     nProcY=2)
        assert_outputs_close(10, 10, 1, 1.5e-13)
        assert_volume_conservation(10, 10, 1, 1e-5)
        assert_diagnostics_similar(['h', 'u', 'v'], 1e-10)
Ejemplo n.º 18
0
def test_gaussian_bump_continuation():
    xlen = 1e6
    ylen = 1e6
    with working_directory(p.join(self_path, "beta_plane_bump")):
        drv.simulate(initHfile=[bump, lambda X, Y: 2000. - bump(X, Y)],
                     nx=10,
                     ny=10,
                     exe=test_executable,
                     dx=xlen / 10,
                     dy=ylen / 10,
                     niter0=201,
                     nTimeSteps=200)
        assert_outputs_close(10, 10, 2, 2e-13)
        assert_volume_conservation(10, 10, 2, 1e-5)
        assert_diagnostics_similar(['h', 'u', 'v', 'eta'], 1e-10)
Ejemplo n.º 19
0
def test_open_mfdataarray_multiple_variables():
    '''This test tries to open multiple different variables in the same call,
        and should fail.'''

    xlen = 1e6
    ylen = 2e6
    nx = 10
    ny = 20
    layers = 1
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    with working_directory(p.join(self_path, "beta_plane_gyre_red_grav")):
        with pytest.raises(Exception):
            output_files = glob.glob('output/snap.*')
            ds = aro.open_mfdataarray(output_files, grid)
Ejemplo n.º 20
0
def test_gaussian_bump_red_grav_continuation_of_single_core_MPI_2X():
    xlen = 1e6
    ylen = 1e6
    with working_directory(p.join(self_path, "beta_plane_bump_red_grav")):
        drv.simulate(initHfile=[bump],
                     exe=test_executable,
                     nx=10,
                     ny=10,
                     dx=xlen / 10,
                     dy=ylen / 10,
                     niter0=101,
                     nTimeSteps=400,
                     nProcX=2)
        assert_outputs_close(10, 10, 1, 1.5e-13)
        assert_volume_conservation(10, 10, 1, 1e-5)
        assert_diagnostics_similar(['h', 'u', 'v'], 1e-10)
Ejemplo n.º 21
0
def benchmark_gaussian_bump_plot():
    with working_directory(p.join(self_path, "beta_plane_bump")):
        with open("times.pkl", "rb") as f:
            (grid_points, run_time_O1, run_time_Ofast, run_time_hypre_test,
             run_time_hypre) = pkl.load(f)

        plt.figure()
        plt.loglog(grid_points,
                   run_time_O1 * scale_factor,
                   '-*',
                   label='aronnax_test')
        plt.loglog(grid_points,
                   run_time_Ofast * scale_factor,
                   '-*',
                   label='aronnax_core')
        plt.loglog(grid_points,
                   run_time_hypre_test * scale_factor,
                   '-o',
                   label='aronnax_external_solver_test')
        plt.loglog(grid_points,
                   run_time_hypre * scale_factor,
                   '-o',
                   label='aronnax_external_solver')
        scale = scale_factor * run_time_O1[3] / (grid_points[3]**3)
        plt.loglog(grid_points,
                   scale * grid_points**3,
                   ':',
                   label='O(nx**3)',
                   color='black',
                   linewidth=0.5)
        scale = scale_factor * run_time_hypre[3] / (grid_points[3]**2)
        plt.loglog(grid_points,
                   scale * grid_points**2,
                   ':',
                   label='O(nx**2)',
                   color='blue',
                   linewidth=0.5)
        plt.legend()
        plt.xlabel('Resolution (grid cells on one side)')
        plt.ylabel('Avg time per integration step (ms)')
        plt.title(
            'Runtime scaling of a 2-layer Aronnax simulation\nwith bathymetry on a square grid'
        )
        plt.savefig('beta_plane_bump_scaling.png', dpi=150)
Ejemplo n.º 22
0
def test_vertical_thickness_diffusion():
    nx = 2
    ny = 2

    dx = 1e4
    dy = 1e4

    grid = aro.Grid(nx, ny, 1, dx, dy)

    kv = 1e-5
    initH = 10.

    def wetmask(X, Y):
        mask = np.ones(X.shape, dtype=np.float64)
        return mask

    # 2 years
    dt = 200.
    nTimeSteps = int(0.25 * 365 * 86400 / dt)
    diagFreq = nTimeSteps * dt / 50.

    with working_directory(p.join(self_path, "vertical_diffusion")):
        drv.simulate(initHfile=[initH],
                     nx=nx,
                     ny=ny,
                     dx=dx,
                     dy=dy,
                     exe="aronnax_test",
                     wetMaskFile=[wetmask],
                     fUfile=[-1e-4],
                     fVfile=[-1e-4],
                     kv=kv,
                     dt=dt,
                     nTimeSteps=nTimeSteps,
                     diagFreq=diagFreq,
                     dumpFreq=1e9)

        simuated_h_evo = np.loadtxt('output/diagnostic.h.csv',
                                    delimiter=',',
                                    skiprows=1,
                                    usecols=(0, 2))
        expected_h_evo = np.sqrt(simuated_h_evo[:, 0] * dt * kv * 2. +
                                 initH**2)
        assert np.max(abs(simuated_h_evo[:, 1] - expected_h_evo)) < 0.0005
Ejemplo n.º 23
0
def test_open_mfdataarray_h_location():
    '''Open a number of files and assert that the length of the iter
        dimension is the same as the number of files, and that the
        correct x and y variables have been used.'''

    xlen = 1e6
    ylen = 2e6
    nx = 10
    ny = 20
    layers = 1
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    with working_directory(p.join(self_path, "beta_plane_gyre_red_grav")):
        output_files = glob.glob('output/snap.h*')
        ds = aro.open_mfdataarray(output_files, grid)

        assert len(output_files) == ds.iter.shape[0]
        assert nx == ds.x.shape[0]
        assert ny == ds.y.shape[0]
Ejemplo n.º 24
0
def test_periodic_BC_red_grav():
    nx = 50
    ny = 20
    layers = 2

    dx = 5e4
    dy = 5e4

    grid = aro.Grid(nx, ny, layers, dx, dy)

    rho0 = 1035

    def wetmask(X, Y):
        mask = np.ones(X.shape, dtype=np.float64)
        return mask

    def layer_1(X, Y):
        return 500. + 300 * np.exp(-((6e5 - X)**2 + (6e5 - Y)**2) /
                                   (2 * 1e5**2))

    def layer_2(X, Y):
        return 1000. - layer_1(X, Y)

    with working_directory(p.join(self_path, "periodic_BC_red_grav")):
        drv.simulate(initHfile=[layer_1, layer_2],
                     nx=nx,
                     ny=ny,
                     layers=layers,
                     dx=dx,
                     dy=dy,
                     exe=test_executable,
                     wetMaskFile=[wetmask],
                     fUfile=[-1e-4],
                     fVfile=[-1e-4],
                     nTimeSteps=801,
                     dumpFreq=10000,
                     nProcY=2)
        assert_outputs_close(nx, ny, layers, 3e-12)
        assert_volume_conservation(nx, ny, layers, 1e-5)
        assert_diagnostics_similar(['h', 'u', 'v'], 1e-10)
Ejemplo n.º 25
0
def test_beta_plane_gyre_free_surf():
    xlen = 1e6
    ylen = 2e6
    nx = 10
    ny = 20
    layers = 2
    grid = aro.Grid(nx, ny, layers, xlen / nx, ylen / ny)

    def wind(_, Y):
        return 0.05 * (1 - np.cos(2 * np.pi * Y / np.max(grid.y)))

    with working_directory(p.join(self_path, "beta_plane_gyre_free_surf")):
        drv.simulate(zonalWindFile=[wind],
                     valgrind=False,
                     nx=nx,
                     ny=ny,
                     exe=test_executable,
                     dx=xlen / nx,
                     dy=ylen / ny)
        assert_outputs_close(nx, ny, layers, 3e-12)
        assert_volume_conservation(nx, ny, layers, 1e-5)
        assert_diagnostics_similar(['h', 'u', 'v', 'eta'], 1e-8)
Ejemplo n.º 26
0
def test_periodic_BC_Hypre():
    nx = 50
    ny = 20
    layers = 2

    dx = 5e4
    dy = 5e4

    grid = aro.Grid(nx, ny, layers, dx, dy)

    rho0 = 1035

    def wetmask(X, Y):
        mask = np.ones(X.shape, dtype=np.float64)
        return mask

    def eta(X, Y):
        return 0. + 1. * np.exp(-((6e5 - X)**2 + (5e5 - Y)**2) / (2 * 1e5**2))

    with working_directory(p.join(self_path, "periodic_BC")):
        drv.simulate(initHfile=[500., 500.],
                     nx=nx,
                     ny=ny,
                     layers=layers,
                     dx=dx,
                     dy=dy,
                     exe="aronnax_external_solver_test",
                     wetMaskFile=[wetmask],
                     fUfile=[-1e-4],
                     fVfile=[-1e-4],
                     initEtaFile=[eta],
                     depthFile=[1000.],
                     nTimeSteps=801,
                     dumpFreq=10000)
        assert_outputs_close(nx, ny, layers, 3e-12)
        assert_volume_conservation(nx, ny, layers, 3e-5)
Ejemplo n.º 27
0
def do_red_grav(nx, aro_build, perf):
    with working_directory(p.join(self_path, "beta_plane_bump_red_grav")):
        aro.simulate(exe=aro_build, initHfile=[bump], nx=nx, ny=nx, perf=perf)
Ejemplo n.º 28
0
def test_f_plane_Hypre_botDrag(botDrag=1e-5, layers=1):

    test_executable = "aronnax_external_solver_test"

    dt = 100

    nx = 10
    ny = 10
    dx = 1e3
    dy = 1e3

    rho0 = 1035.

    grid = aro.Grid(nx, ny, layers, dx, dy)

    def init_U(X, Y, *arg):
        init_u = np.zeros(Y.shape, dtype=np.float64)
        init_u[:, :] = 3e-5

        return init_u

    def dbl_periodic_wetmask(X, Y):
        return np.ones(X.shape, dtype=np.float64)

    with working_directory(p.join(self_path, "bot_drag")):

        if layers == 1:
            drv.simulate(initHfile=[400.],
                         initUfile=[init_U],
                         depthFile=[layers * 400],
                         exe=test_executable,
                         wetMaskFile=[dbl_periodic_wetmask],
                         nx=nx,
                         ny=ny,
                         dx=dx,
                         dy=dy,
                         dt=dt,
                         dumpFreq=200,
                         diagFreq=dt,
                         botDrag=botDrag,
                         nTimeSteps=400)
        else:
            drv.simulate(initHfile=[400. for i in range(layers)],
                         initUfile=[init_U for i in range(layers)],
                         depthFile=[layers * 400],
                         exe=test_executable,
                         wetMaskFile=[dbl_periodic_wetmask],
                         nx=nx,
                         ny=ny,
                         layers=layers,
                         dx=dx,
                         dy=dy,
                         dt=dt,
                         dumpFreq=200,
                         diagFreq=dt,
                         botDrag=botDrag,
                         nTimeSteps=400)

        hfiles = sorted(glob.glob("output/snap.h.*"))
        ufiles = sorted(glob.glob("output/snap.u.*"))
        vfiles = sorted(glob.glob("output/snap.v.*"))

        model_iteration = np.zeros(len(hfiles))

        momentum = np.zeros(len(hfiles))
        momentum_expected = np.zeros(len(hfiles))

        for counter, ufile in enumerate(ufiles):

            h = aro.interpret_raw_file(hfiles[counter], nx, ny, layers)
            u = aro.interpret_raw_file(ufile, nx, ny, layers)
            v = aro.interpret_raw_file(vfiles[counter], nx, ny, layers)

            model_iteration[counter] = float(ufile[-10:])

            momentum[counter] = (
                nx * ny * dx * dy * rho0 *
                (np.mean(h[-1, :, :]) *
                 (np.mean(u[-1, :, :]) + np.mean(v[-1, :, :]))))

        opt.assert_volume_conservation(nx, ny, layers, 1e-9)

        init_h = 400
        X, Y = np.meshgrid(grid.x, grid.yp1)
        init_u = init_U(X, Y)

        momentum_expected[:] = (nx * ny * dx * dy * rho0 *
                                (np.mean(init_h) * np.mean(init_u[:, :])) *
                                np.exp(-model_iteration * dt * botDrag))

        test_passes = True

        try:
            np.testing.assert_allclose(momentum,
                                       momentum_expected,
                                       rtol=2e-3,
                                       atol=0)
            return
        except AssertionError as error:
            test_passes = False

            # plot output for visual inspection
            plt.figure()
            plt.plot(model_iteration * dt / (86400),
                     momentum,
                     '-',
                     alpha=1,
                     label='Simulated momentum')
            plt.plot(model_iteration * dt / (86400),
                     momentum_expected,
                     '-',
                     alpha=1,
                     label='Expected momentum')
            plt.legend()
            plt.xlabel('Time (days)')
            plt.ylabel('Momentum')
            plt.savefig('f_plane_momentum_test.png', dpi=150)

            plt.figure()
            plt.plot(model_iteration, momentum / momentum_expected)
            plt.xlabel('timestep')
            plt.ylabel('simulated/expected')
            plt.savefig('momentum_ratio.png')
            plt.close()

            plt.figure()
            plt.plot(model_iteration * dt / (86400),
                     100. * (momentum - momentum_expected) / momentum_expected)
            plt.xlabel('Time (days)')
            plt.ylabel('percent error')
            plt.ylim(-20, 80)
            plt.savefig('momentum_percent_error.png')
            plt.close()

        assert test_passes
Ejemplo n.º 29
0
def compile_core(config):
    """Compile the Aronnax core, if needed."""
    core_name = config.get("executable", "exe")
    with working_directory(root_path):
        sub.check_call(["make", core_name])
Ejemplo n.º 30
0
def simulate(work_dir=".", config_path="aronnax.conf", **options):
    """Main entry point for running an Aronnax simulation.

    A simulation occurs in the working directory given by the
    `work_dir` parameter, which defaults to the current directory when
    `simulate` is invoked.  The default arrangement of the working
    directory is as follows:

        - aronnax.conf - configuration file for that run
        - aronnax-merged.conf - file to save effective configuration, including
          effects of options passed to `simulate`. This file is automatically
          generated by merging the aronnax.conf file with the options passed to
          this function
        - parameters.in - relevant portions of aronnax-merged.conf in Fortran
          namelist format. Also generated automatically
        - input/ - subdirectory where Aronnax will save input field files
          in Fortran raw array format
        - output/ - subdirectory where Aronnax will save output field files
          in Fortran raw array format

    The process for a simulation is to

        1. Compute the configuration
        2. Recompile the Fortran core if necessary
        3. Save the computed configuration in aronnax-merged.conf
        4. Write raw-format input fields into input/
        5. Write parameters.in
        6. Execute the Fortran core, which writes progress messages
           to standard output and raw-format output fields into output/

    All the simulation parameters can be controlled from the
    configuration file aronnax.conf, and additionally can be
    overridden by passing them as optional arguments to `simulate`.

    Calling `simulate` directly provides one capability that cannot be
    accessed from the configuration file: custom idealized input
    generators.

    """
    config_file = p.join(work_dir, config_path)
    config = default_configuration()
    config.read(config_file)
    merge_config(config, options)
    with working_directory(work_dir):
        compile_core(config)
        # XXX Try to avoid overwriting the input configuration
        with open('aronnax-merged.conf', 'w') as f:
            config.write(f)
        # sub.check_call(["rm", "-rf", "output/"])
        sub.check_call(["mkdir", "-p", "output/"])
        sub.check_call(["mkdir", "-p", "checkpoints/"])
        with working_directory("input"):
            generate_input_data_files(config)
        generate_parameters_file(config)
        then = time.time()
        run_executable(config)
        core_run_time = time.time() - then
        sub.check_call(["rm", "-rf", "netcdf-output/"])
        sub.check_call(["mkdir", "-p", "netcdf-output/"])
        convert_output_to_netcdf(config)
        return core_run_time