Ejemplo n.º 1
0
def test_poly1d_prod():
    '''
    Checks the product of the polynomials of different degrees using the
    poly1d_product function and compares it to the analytically calculated
    product coefficients.
    '''

    N = 3

    N_a = 3
    poly_a = af.range(N * N_a, dtype=af.Dtype.u32)
    poly_a = af.moddims(poly_a, d0=N, d1=N_a)

    N_b = 2
    poly_b = af.range(N * N_b, dtype=af.Dtype.u32)
    poly_b = af.moddims(poly_b, d0=N, d1=N_b)

    ref_poly = af.np_to_af_array(
        np.array([[0., 0., 9., 18.], [1., 8., 23., 28.], [4., 20., 41., 40.]]))

    test_poly1d_prod = utils.poly1d_product(poly_a, poly_b)
    test_poly1d_prod_commutative = utils.poly1d_product(poly_b, poly_a)

    diff = af.abs(test_poly1d_prod - ref_poly)
    diff_commutative = af.abs(test_poly1d_prod_commutative - ref_poly)

    assert af.all_true(diff == 0.) and af.all_true(diff_commutative == 0.)
Ejemplo n.º 2
0
def test_Li_basis_value():
    '''
    This test compares the output of the lagrange basis value calculated by the
    function ``Li_basis_value`` to the analytical value of the lagrange
    polynomials created using the same LGL points.
    The analytical values were calculated in this sage worksheet_
    
    .. _worksheet: https://goo.gl/ADyA3U
    '''
    
    threshold = 1e-11
    
    Li_value_ref = af.np_to_af_array(utils.csv_to_numpy(
        'dg_maxwell/tests/lagrange/files/Li_value.csv'))
    
    N_LGL = 8
    xi_LGL = lagrange.LGL_points(N_LGL)
    L_basis_poly1d, L_basis_af = lagrange.lagrange_polynomials(xi_LGL)
    L_basis_af = af.np_to_af_array(L_basis_af)
    
    Li_indexes = af.np_to_af_array(np.arange(3, dtype = np.int32))
    xi = af.np_to_af_array(np.linspace(-1., 1, 10))
                           
    Li_value = lagrange.Li_basis_value(L_basis_af, Li_indexes, xi)
    
    assert af.all_true(af.abs(Li_value - Li_value_ref) < threshold)
Ejemplo n.º 3
0
def monte_carlo_options(N,
                        K,
                        t,
                        vol,
                        r,
                        strike,
                        steps,
                        use_barrier=True,
                        B=None,
                        ty=af.Dtype.f32):
    payoff = af.constant(0, N, 1, dtype=ty)

    dt = t / float(steps - 1)
    s = af.constant(strike, N, 1, dtype=ty)

    randmat = af.randn(N, steps - 1, dtype=ty)
    randmat = af.exp((r - (vol * vol * 0.5)) * dt +
                     vol * math.sqrt(dt) * randmat)

    S = af.product(af.join(1, s, randmat), 1)

    if (use_barrier):
        S = S * af.all_true(S < B, 1)

    payoff = af.maxof(0, S - K)
    return af.mean(payoff) * math.exp(-r * t)
Ejemplo n.º 4
0
def test_dy_dxi():
    '''
    This test checks the derivative :math:`\\frac{\\partial y}{\\partial \\xi}`
    calculated using the function :math:`dg_maxwell.wave_equation_2d.dy_dxi`
    for the :math:`0^{th}` element of a mesh for a circular ring. You may
    download the file from this
    :download:`link <../dg_maxwell/tests/wave_equation_2d/files/circle.msh>`.
    '''
    threshold = 1e-7

    dy_dxi_reference = af.np_to_af_array(
        utils.csv_to_numpy(
            'dg_maxwell/tests/wave_equation_2d/files/dy_dxi_data.csv'))

    nodes, elements = msh_parser.read_order_2_msh(
        'dg_maxwell/tests/wave_equation_2d/files/circle.msh')

    N_LGL = 16
    xi_LGL = lagrange.LGL_points(N_LGL)
    eta_LGL = lagrange.LGL_points(N_LGL)
    Xi = af.data.tile(af.array.transpose(xi_LGL), d0=N_LGL)
    Eta = af.data.tile(eta_LGL, d0=1, d1=N_LGL)

    dy_dxi = wave_equation_2d.dy_dxi(nodes[elements[0]][:, 1], Xi, Eta)

    check = af.abs(dy_dxi - dy_dxi_reference) < threshold

    assert af.all_true(check)
Ejemplo n.º 5
0
def test_integrate_1d():
    '''
    Tests the ``integrate_1d`` by comparing the integral agains the
    analytically calculated integral. The polynomials to be integrated
    are all the Lagrange polynomials obtained for the LGL points.
    
    The analytical integral is calculated in this `sage worksheet`_
    
    .. _sage worksheet: https://goo.gl/1uYyNJ
    '''

    threshold = 1e-12

    N_LGL = 8
    xi_LGL = lagrange.LGL_points(N_LGL)
    eta_LGL = lagrange.LGL_points(N_LGL)
    _, Li_xi = lagrange.lagrange_polynomials(xi_LGL)
    _, Lj_eta = lagrange.lagrange_polynomials(eta_LGL)

    Li_xi = af.np_to_af_array(Li_xi)
    Lp_xi = Li_xi.copy()

    Li_Lp = utils.poly1d_product(Li_xi, Lp_xi)

    test_integral_gauss = utils.integrate_1d(Li_Lp, order=9, scheme='gauss')

    test_integral_lobatto = utils.integrate_1d(Li_Lp,
                                               order=N_LGL + 1,
                                               scheme='lobatto')

    ref_integral = af.np_to_af_array(
        np.array([
            0.0333333333333, 0.196657278667, 0.318381179651, 0.384961541681,
            0.384961541681, 0.318381179651, 0.196657278667, 0.0333333333333
        ]))

    diff_gauss = af.abs(ref_integral - test_integral_gauss)
    diff_lobatto = af.abs(ref_integral - test_integral_lobatto)

    assert af.all_true(diff_gauss < threshold) and af.all_true(
        diff_lobatto < threshold)
Ejemplo n.º 6
0
def all(a: ndarray,
        axis: tp.Optional[int] = None,
        out: tp.Optional[ndarray] = None,
        keepdims: bool = False) \
        -> tp.Union[bool, ndarray]:
    """
    Returns True if all elements evaluate to True.
    """

    if out:
        raise ValueError('out != None is not supported')

    return _wrap_af_array(af.all_true(a._af_array, dim=axis))
def monte_carlo_options(N, K, t, vol, r, strike, steps, use_barrier = True, B = None, ty = af.Dtype.f32):
    payoff = af.constant(0, N, 1, dtype = ty)

    dt = t / float(steps - 1)
    s = af.constant(strike, N, 1, dtype = ty)

    randmat = af.randn(N, steps - 1, dtype = ty)
    randmat = af.exp((r - (vol * vol * 0.5)) * dt + vol * math.sqrt(dt) * randmat);

    S = af.product(af.join(1, s, randmat), 1)

    if (use_barrier):
        S = S * af.all_true(S < B, 1)

    payoff = af.maxof(0, S - K)
    return af.mean(payoff) * math.exp(-r * t)
Ejemplo n.º 8
0
def test_polyval_2d():
    '''
    Tests the ``utils.polyval_2d`` function by evaluating the polynomial
    
    .. math:: P_0(\\xi) P_1(\\eta)
    
    here,
    
    .. math:: P_0(\\xi) = 3 \, \\xi^{2} + 2 \, \\xi + 1
    
    .. math:: P_1(\\eta) = 3 \, \\eta^{2} + 2 \, \\eta + 1
    
    at corresponding ``linspace`` points in :math:`\\xi \\in [-1, 1]` and
    :math:`\\eta \\in [-1, 1]`.
    
    This value is then compared with the reference value calculated analytically.
    The reference values are calculated in
    `polynomial_product_two_variables.sagews`_
    
    .. _polynomial_product_two_variables.sagews: https://goo.gl/KwG7k9
    
    '''
    threshold = 1e-12

    poly_xi_degree = 4
    poly_xi = af.flip(af.np_to_af_array(np.arange(1, poly_xi_degree)))

    poly_eta_degree = 4
    poly_eta = af.flip(af.np_to_af_array(np.arange(1, poly_eta_degree)))

    poly_xi_eta = utils.polynomial_product_coeffs(poly_xi, poly_eta)

    xi = utils.linspace(-1, 1, 8)
    eta = utils.linspace(-1, 1, 8)

    polyval_xi_eta = af.transpose(utils.polyval_2d(poly_xi_eta, xi, eta))

    polyval_xi_eta_ref = af.np_to_af_array(
        np.array([
            4.00000000000000, 1.21449396084962, 0.481466055810080,
            0.601416076634741, 1.81424406497291, 5.79925031236988,
            15.6751353602663, 36.0000000000000
        ]))

    diff = af.abs(polyval_xi_eta - polyval_xi_eta_ref)

    assert af.all_true(diff < threshold)
Ejemplo n.º 9
0
 def all(self, s, axis):
     return arrayfire.all_true(s, dim=axis)
Ejemplo n.º 10
0
def simple_algorithm(verbose = False):
    display_func = _util.display_func(verbose)
    print_func   = _util.print_func(verbose)

    a = af.randu(3, 3)

    print_func(af.sum(a), af.product(a), af.min(a), af.max(a),
               af.count(a), af.any_true(a), af.all_true(a))

    display_func(af.sum(a, 0))
    display_func(af.sum(a, 1))

    display_func(af.product(a, 0))
    display_func(af.product(a, 1))

    display_func(af.min(a, 0))
    display_func(af.min(a, 1))

    display_func(af.max(a, 0))
    display_func(af.max(a, 1))

    display_func(af.count(a, 0))
    display_func(af.count(a, 1))

    display_func(af.any_true(a, 0))
    display_func(af.any_true(a, 1))

    display_func(af.all_true(a, 0))
    display_func(af.all_true(a, 1))

    display_func(af.accum(a, 0))
    display_func(af.accum(a, 1))

    display_func(af.sort(a, is_ascending=True))
    display_func(af.sort(a, is_ascending=False))

    b = (a > 0.1) * a
    c = (a > 0.4) * a
    d = b / c
    print_func(af.sum(d));
    print_func(af.sum(d, nan_val=0.0));
    display_func(af.sum(d, dim=0, nan_val=0.0));

    val,idx = af.sort_index(a, is_ascending=True)
    display_func(val)
    display_func(idx)
    val,idx = af.sort_index(a, is_ascending=False)
    display_func(val)
    display_func(idx)

    b = af.randu(3,3)
    keys,vals = af.sort_by_key(a, b, is_ascending=True)
    display_func(keys)
    display_func(vals)
    keys,vals = af.sort_by_key(a, b, is_ascending=False)
    display_func(keys)
    display_func(vals)

    c = af.randu(5,1)
    d = af.randu(5,1)
    cc = af.set_unique(c, is_sorted=False)
    dd = af.set_unique(af.sort(d), is_sorted=True)
    display_func(cc)
    display_func(dd)

    display_func(af.set_union(cc, dd, is_unique=True))
    display_func(af.set_union(cc, dd, is_unique=False))

    display_func(af.set_intersect(cc, cc, is_unique=True))
    display_func(af.set_intersect(cc, cc, is_unique=False))
Ejemplo n.º 11
0
 def all(self, s, axis):
     return arrayfire.all_true(s, dim=axis)
Ejemplo n.º 12
0
#!/usr/bin/python
#######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

import arrayfire as af

a = af.randu(3, 3)

print(af.sum(a), af.product(a), af.min(a), af.max(a), af.count(a),
      af.any_true(a), af.all_true(a))

af.display(af.sum(a, 0))
af.display(af.sum(a, 1))

af.display(af.product(a, 0))
af.display(af.product(a, 1))

af.display(af.min(a, 0))
af.display(af.min(a, 1))

af.display(af.max(a, 0))
af.display(af.max(a, 1))

af.display(af.count(a, 0))
af.display(af.count(a, 1))
Ejemplo n.º 13
0
#!/usr/bin/python
import arrayfire as af

a = af.randu(3, 3)

print(af.sum(a), af.product(a), af.min(a), af.max(a), af.count(a), af.any_true(a), af.all_true(a))

af.print_array(af.sum(a, 0))
af.print_array(af.sum(a, 1))

af.print_array(af.product(a, 0))
af.print_array(af.product(a, 1))

af.print_array(af.min(a, 0))
af.print_array(af.min(a, 1))

af.print_array(af.max(a, 0))
af.print_array(af.max(a, 1))

af.print_array(af.count(a, 0))
af.print_array(af.count(a, 1))

af.print_array(af.any_true(a, 0))
af.print_array(af.any_true(a, 1))

af.print_array(af.all_true(a, 0))
af.print_array(af.all_true(a, 1))

af.print_array(af.accum(a, 0))
af.print_array(af.accum(a, 1))
Ejemplo n.º 14
0
def simple_algorithm(verbose=False):
    display_func = _util.display_func(verbose)
    print_func = _util.print_func(verbose)

    a = af.randu(3, 3)
    k = af.constant(1, 3, 3, dtype=af.Dtype.u32)
    af.eval(k)

    print_func(af.sum(a), af.product(a), af.min(a), af.max(a), af.count(a),
               af.any_true(a), af.all_true(a))

    display_func(af.sum(a, 0))
    display_func(af.sum(a, 1))

    rk = af.constant(1, 3, dtype=af.Dtype.u32)
    rk[2] = 0
    af.eval(rk)
    display_func(af.sumByKey(rk, a, dim=0))
    display_func(af.sumByKey(rk, a, dim=1))

    display_func(af.productByKey(rk, a, dim=0))
    display_func(af.productByKey(rk, a, dim=1))

    display_func(af.minByKey(rk, a, dim=0))
    display_func(af.minByKey(rk, a, dim=1))

    display_func(af.maxByKey(rk, a, dim=0))
    display_func(af.maxByKey(rk, a, dim=1))

    display_func(af.anyTrueByKey(rk, a, dim=0))
    display_func(af.anyTrueByKey(rk, a, dim=1))

    display_func(af.allTrueByKey(rk, a, dim=0))
    display_func(af.allTrueByKey(rk, a, dim=1))

    display_func(af.countByKey(rk, a, dim=0))
    display_func(af.countByKey(rk, a, dim=1))

    display_func(af.product(a, 0))
    display_func(af.product(a, 1))

    display_func(af.min(a, 0))
    display_func(af.min(a, 1))

    display_func(af.max(a, 0))
    display_func(af.max(a, 1))

    display_func(af.count(a, 0))
    display_func(af.count(a, 1))

    display_func(af.any_true(a, 0))
    display_func(af.any_true(a, 1))

    display_func(af.all_true(a, 0))
    display_func(af.all_true(a, 1))

    display_func(af.accum(a, 0))
    display_func(af.accum(a, 1))

    display_func(af.scan(a, 0, af.BINARYOP.ADD))
    display_func(af.scan(a, 1, af.BINARYOP.MAX))

    display_func(af.scan_by_key(k, a, 0, af.BINARYOP.ADD))
    display_func(af.scan_by_key(k, a, 1, af.BINARYOP.MAX))

    display_func(af.sort(a, is_ascending=True))
    display_func(af.sort(a, is_ascending=False))

    b = (a > 0.1) * a
    c = (a > 0.4) * a
    d = b / c
    print_func(af.sum(d))
    print_func(af.sum(d, nan_val=0.0))
    display_func(af.sum(d, dim=0, nan_val=0.0))

    val, idx = af.sort_index(a, is_ascending=True)
    display_func(val)
    display_func(idx)
    val, idx = af.sort_index(a, is_ascending=False)
    display_func(val)
    display_func(idx)

    b = af.randu(3, 3)
    keys, vals = af.sort_by_key(a, b, is_ascending=True)
    display_func(keys)
    display_func(vals)
    keys, vals = af.sort_by_key(a, b, is_ascending=False)
    display_func(keys)
    display_func(vals)

    c = af.randu(5, 1)
    d = af.randu(5, 1)
    cc = af.set_unique(c, is_sorted=False)
    dd = af.set_unique(af.sort(d), is_sorted=True)
    display_func(cc)
    display_func(dd)

    display_func(af.set_union(cc, dd, is_unique=True))
    display_func(af.set_union(cc, dd, is_unique=False))

    display_func(af.set_intersect(cc, cc, is_unique=True))
    display_func(af.set_intersect(cc, cc, is_unique=False))