Ejemplo n.º 1
0
                                    mask=ice_mask,
                                    mask_value=4)
ice_n0_a_priori = MaskedRegularGrid(ice_n0_a_priori,
                                    20,
                                    ice_mask,
                                    "altitude",
                                    provide_retrieval_grid=False)

#
# Hydrometeor definition
#

ice = Hydrometeor("ice", D14NDmIce(), [ice_n0_a_priori, ice_dm_a_priori],
                  ice_shape, ice_shape_meta)
ice.transformations = [
    Composition(Log10(), PiecewiseLinear(ice_n0_a_priori)),
    Identity()
]
# Lower limits for N_0^* and m in transformed space.
ice.limits_low = [2, 1e-8]

###############################################################################
# Snow particles
###############################################################################

snow_shape = os.path.join(scattering_data, "EvansSnowAggregate.xml")
snow_shape_meta = os.path.join(scattering_data, "EvansSnowAggregate.meta.xml")
snow_mask = And(AltitudeMask(0.0, 19e3), TemperatureMask(0.0, 276.0))

#
# D_m
Ejemplo n.º 2
0
                                    ice_covariance,
                                    mask=ice_mask,
                                    mask_value=1e-6)
ice_dm_a_priori = ReducedVerticalGrid(ice_dm_a_priori,
                                      z_grid,
                                      "altitude",
                                      provide_retrieval_grid=False)

#
# Hydrometeor definition
#

ice = Hydrometeor("ice", D14NDmIce(), [ice_n0_a_priori, ice_dm_a_priori],
                  ice_shape, ice_shape_meta)
ice.transformations = [
    Composition(Log10(), PiecewiseLinear(ice_n0_a_priori)),
    Composition(Identity(), PiecewiseLinear(ice_dm_a_priori))
]
ice.limits_low = [4, 1e-8]
ice.radar_only = False

################################################################################
# Snow particles
################################################################################

# Default shape
snow_shape = os.path.join(scattering_data, "EvansSnowAggregate.xml")
snow_shape_meta = os.path.join(scattering_data, "EvansSnowAggregate.meta.xml")

snow_mask = And(TropopauseMask(), TemperatureMask(0.0, 280.0))
snow_covariance = Diagonal(4 * np.ones(md_z_grid.size))
Ejemplo n.º 3
0
#                                    ice_mask,
#                                    "altitude",
#                                    provide_retrieval_grid=False)
#ice_dm_a_priori = ReducedVerticalGrid(ice_dm_a_priori,
#                                      z_grid,
#                                      "altitude",
#                                      provide_retrieval_grid=False)

#
# Hydrometeor definition.
#

ice = Hydrometeor("ice", D14NDmIce(), [ice_n0_a_priori, ice_dm_a_priori],
                  ice_shape, ice_shape_meta)
ice.transformations = [
    Composition(Log10(), PiecewiseLinear(ice_n0_a_priori)),
    Identity()  #Composition(Identity(), PiecewiseLinear(ice_dm_a_priori))
]
ice.limits_low = [4, 1e-10]
ice.radar_only = False

################################################################################
# Rain particles
################################################################################

rain_shape = os.path.join(scattering_data, "LiquidSphere.xml")
rain_shape_meta = os.path.join(scattering_data, "LiquidSphere.meta.xml")

#
# water content
#
Ejemplo n.º 4
0
ice_n0_a_priori = ReferenceAPriori("ice_n0",
                                   ice_covariance,
                                   mask=ice_mask,
                                   mask_value=2,
                                   a_priori=ice_n0_a_priori,
                                   transformation=Log10())
ice_n0_a_priori = MaskedRegularGrid(ice_n0_a_priori,
                                    10,
                                    ice_mask,
                                    "altitude",
                                    provide_retrieval_grid=False)

ice = Hydrometeor("ice", D14NDmIce(), [ice_n0_a_priori, ice_dm_a_priori],
                  ice_shape, ice_shape_meta)
ice.transformations = [
    Composition(Log10(), PiecewiseLinear(ice_n0_a_priori)),
    Identity()
]
ice.limits_low = [4, 1e-8]
ice.psd.cutoff_low = [1e2, 1e-8]

################################################################################
# Snow particles
################################################################################

snow_shape = os.path.join(scattering_data, "8-ColumnAggregate.xml")
snow_shape_meta = os.path.join(scattering_data, "8-ColumnAggregate.meta.xml")
snow_mask = And(AltitudeMask(0.0, 19e3), TemperatureMask(0.0, 276.0))

snow_covariance = Diagonal(100e-6**2, mask=snow_mask, mask_value=1e-12)
snow_covariance = SpatialCorrelation(snow_covariance, 2e3, mask=snow_mask)
Ejemplo n.º 5
0
    def _setup_retrieval(self):
        """
        Setup the artssat simulation used to perform the retrieval.
        """

        for q in self.hydrometeors:

            limit_low_1, limit_low_2 = q.limits_low
            if hasattr(q, "limits_high"):
                limit_high_1, limit_high_2 = q.limits_high
            else:
                limit_high_1, limit_high_2 = np.inf, np.inf

            md = q.moments[0]
            self.simulation.retrieval.add(md)
            md.transformation = q.transformations[0]
            md.retrieval.limit_low = q.limits_low[0]
            md.retrieval.limit_high = limit_high_1

            n0 = q.moments[1]
            self.simulation.retrieval.add(n0)
            n0.transformation = q.transformations[1]
            n0.retrieval.limit_low = q.limits_low[1]
            n0.retrieval.limit_high = limit_high_2

        h2o = self.simulation.atmosphere.absorbers[-1]

        h2o_a = [p for p in self.data_provider.subproviders \
                 if getattr(p, "name", "") == "H2O"]
        if len(h2o_a) > 0:
            h2o_a = h2o_a[0]
            self.simulation.retrieval.add(h2o)
            atanh = Atanh(0.0, 1.1)
            if h2o_a.transformation is not None:
                h2o.transformation = h2o_a.transformation
            h2o.retrieval.unit = RelativeHumidity()

            if hasattr(h2o_a, "limit_low"):
                h2o.retrieval.limit_low = h2o_a.limit_low
            if hasattr(h2o_a, "limit_high"):
                h2o.retrieval.limit_high = h2o_a.limit_high
            self.h2o = h2o
        else:
            self.h2o = None

        if self.include_cloud_water:
            cw_a = [p for p in self.data_provider.subproviders \
                    if getattr(p, "name", "") == "cloud_water"][0]
            cw = self.simulation.atmosphere.absorbers[-2]
            self.simulation.retrieval.add(cw)
            pl = PiecewiseLinear(cw_a)
            cw.transformation = Composition(Log10(), pl)
            cw.retrieval.limit_high = -3
            self.cw = cw
        else:
            self.cw = None

        t_a = [p for p in self.data_provider.subproviders \
               if getattr(p, "name", "") == "temperature"]
        if len(t_a) > 0:
            t = self.simulation.atmosphere.temperature
            self.temperature = t
            self.simulation.retrieval.add(self.temperature)
        else:
            self.temperature = None