Ejemplo n.º 1
0
stock_img /= np.max(stock_img)


# %%
# Add Noise to the Image
# ----------------------
# Now that we have an example array, we will begin using the ASPIRE toolkit.
# First we will make an ASPIRE Image instance out of our data.
# This is a light wrapper over the numpy array. Many ASPIRE internals
# are built around an ``Image`` class.

# Construct the Image class by passing it an array of data.
img = Image(stock_img)
# Downsample (just to speeds things up)
new_resolution = img.res // 4
img = img.downsample(new_resolution)


# We will begin processing by adding some noise.
# We would like to create uniform noise for a 2d image with prescibed variance,
noise_var = np.var(img.asnumpy()) * 5
noise_filter = ScalarFilter(dim=2, value=noise_var)

# Then create a NoiseAdder.
noise = NoiseAdder(seed=123, noise_filter=noise_filter)

# We can apply the NoiseAdder to our image data.
img_with_noise = noise.forward(img)

# We will plot the original and first noisy image,
# because we only have one image in our Image stack right now.
Ejemplo n.º 2
0
# %%
# Apply a Uniform Shift
# ---------------------

# Apply a single shift to each image.
shifts = np.array([100, 30])
im.shift(shifts).show()

# %%
# Apply Image-wise Shifts
# -----------------------

# Or apply shifts corresponding to to each image.
shifts = np.array([[300 * i, 100 * i] for i in range(1, im.n_images + 1)])
im.shift(shifts).show()

# %%
# Downsampling
# ------------

im.downsample(80).show()

# %%
# CTF Filter
# ----------

# pixel_size/defous_u/defocus_v in Angstrom, voltage in kV
filter = CTFFilter(pixel_size=1, voltage=100, defocus_u=1500, defocus_v=2000)
im.filter(filter).show()