Ejemplo n.º 1
0
    def setUp(self):
        """
        This sets up the test case.
        """

        #Define the residual
        def f(t, y, yd):
            eps = 1.e-6
            my = 1. / eps
            yd_0 = y[1]
            yd_1 = my * ((1. - y[0]**2) * y[1] - y[0])

            res_0 = yd[0] - yd_0
            res_1 = yd[1] - yd_1

            return N.array([res_0, res_1])

        y0 = [2.0, -0.6]  #Initial conditions
        yd0 = [-.6, -200000.]

        #Define an Assimulo problem
        self.mod = Implicit_Problem(f, y0, yd0)
        self.mod_t0 = Implicit_Problem(f, y0, yd0, 1.0)

        #Define an explicit solver
        self.sim = GLIMDA(self.mod)  #Create a Radau5 solve
        self.sim_t0 = GLIMDA(self.mod_t0)

        #Sets the parameters
        self.sim.atol = 1e-4  #Default 1e-6
        self.sim.rtol = 1e-4  #Default 1e-6
        self.sim.inith = 1.e-4  #Initial step-size
Ejemplo n.º 2
0
    def test_simulate_explicit(self):
        """
        Test a simulation of an explicit problem using GLIMDA.
        """
        f = lambda t, y: N.array(-y)
        y0 = [1.0]

        problem = Explicit_Problem(f, y0)
        simulator = GLIMDA(problem)

        assert simulator.yd0[0] == -simulator.y0[0]

        t, y = simulator.simulate(1.0)

        nose.tools.assert_almost_equal(float(y[-1]), float(N.exp(-1.0)), 4)
Ejemplo n.º 3
0
def run_example(with_plots=True):
    r"""
    Example for the use of GLIMDA (general linear multistep method) to solve
    Van der Pol's equation
    
    .. math::
       
        \dot y_1 &= y_2 \\
        \dot y_2 &= \mu ((1.-y_1^2) y_2-y_1)

    with :math:`\mu= 10^6`.

    on return:
    
       - :dfn:`imp_mod`    problem instance
    
       - :dfn:`imp_sim`    solver instance

    """

    #Define the residual
    def f(t, y, yd):
        eps = 1.e-6
        my = 1. / eps
        yd_0 = y[1]
        yd_1 = my * ((1. - y[0]**2) * y[1] - y[0])

        res_0 = yd[0] - yd_0
        res_1 = yd[1] - yd_1

        return N.array([res_0, res_1])

    y0 = [2.0, -0.6]  #Initial conditions
    yd0 = [-.6, -200000.]

    #Define an Assimulo problem
    imp_mod = Implicit_Problem(f,
                               y0,
                               yd0,
                               name='Glimbda Example: Van der Pol (implicit)')

    #Define an explicit solver
    imp_sim = GLIMDA(imp_mod)  #Create a GLIMDA solver

    #Sets the parameters
    imp_sim.atol = 1e-4  #Default 1e-6
    imp_sim.rtol = 1e-4  #Default 1e-6
    imp_sim.inith = 1.e-4  #Initial step-size

    #Simulate
    t, y, yd = imp_sim.simulate(2.)  #Simulate 2 seconds

    #Plot
    if with_plots:
        P.subplot(211)
        P.plot(t, y[:, 0])  #, marker='o')
        P.xlabel('Time')
        P.ylabel('State')
        P.subplot(212)
        P.plot(t, yd[:, 0] * 1.e-5)  #, marker='o')
        P.xlabel('Time')
        P.ylabel('State derivatives scaled with $10^{-5}$')
        P.suptitle(imp_mod.name)
        P.show()

    #Basic test
    x1 = y[:, 0]
    assert N.abs(x1[-1] - 1.706168035) < 1e-3  #For test purpose
    return imp_mod, imp_sim