def Optimization(): scan_object = ta.Scan(x=x_train, y=y_train, params=parameters, model=pet_finder_model, val_split=0, experiment_name='pet_finder') # Evaluate analyze_object = ta.Analyze(scan_object) scan_data = analyze_object.data # heatmap correlation analyze_object.plot_corr('val_accuracy', ['accuracy', 'loss', 'val_loss']) # a four dimensional bar grid ast.bargrid(scan_data, x='lr', y='val_accuracy', hue='num_Nodes', row='loss_function', col='dropout') list_of_parameters = analyze_object.table('val_loss', ['accuracy', 'loss', 'val_loss'], 'val_accuracy') return list_of_parameters
def test_simple_minimal(df): ast.corr(df) ast.kde(data=df, x='A') ast.hist(df, x='A') ast.pie(df, x='other') ast.swarm(df, x='A', y='B', hue='even') ast.scat(df, x='A', y='B', hue='even') ast.line(df, x='A') ast.grid(df, x='A', y='B', col='even') ast.box(df, x='odd', y='A', hue='even') ast.violin(df, x='odd', y='A', hue='even') ast.strip(df, x='odd', y='B', hue='even') ast.count(df, x='cats') ast.bargrid(df, x='even', y='B', hue='other', col='odd') ast.overlap(df, x='A', y='B', label_col='other') ast.multikde(df, x='A', label_col='even') ast.compare(df, x='A', y=['B', 'C'], label_col='other') ast.multicount(df, x='even', hue='odd', col='other')
def bars_full(df): ast.bargrid(data=df, x='cats', y='B', hue='odd', row='even', col='other', style='astetik', dpi=72, title='This is a title', sub_title='And this a subtitle', x_label='this is x label', y_label='and this y', legend=False, x_scale='log', y_scale='symlog', x_limit=[10, 20], y_limit=[1, 21])
def plot_bars(self, x, y, hue, col): '''A comparison plot with 4 axis''' return bargrid(self.data, x=x, y=y, hue=hue, col=col, col_wrap=4)
def plot_bars(self, x, y, hue, col): '''A comparison plot with 4 axis''' try: import astetik as ast return ast.bargrid(self.data, x=x, y=y, hue=hue, col=col, col_wrap=4) except RuntimeError: print('Matplotlib Runtime Error. Plots will not work.')
y=y_train, params=parameters, model=pet_finder_model, val_split=0, experiment_name='pet_finder') # Evaluate analyze_object = ta.Analyze(scan_object) scan_data = analyze_object.data # heatmap correlation analyze_object.plot_corr('val_accuracy', ['accuracy', 'loss', 'val_loss']) # a four dimensional bar grid ast.bargrid(scan_data, x='lr', y='val_accuracy', hue='num_Nodes', row='loss_function', col='dropout') ast.bargrid(scan_data, x='lr', y='val_accuracy', hue='num_Nodes', row='final_activation', col='dropout') # wrapper = KerasClassifier(build_fn=create_network, epochs=epochs) # scorer = make_scorer(f1_score, average= 'weighted') # grid = GridSearchCV(estimator=wrapper,param_grid=parameters,scoring=scorer,iid=False,cv=5,return_train_score=True,verbose=1) # grid_result = grid.fit(x_train,labels_train) best_parameters = analyze_object.table('val_loss',