def gcrs_posvel_from_itrf(loc, toas, obsname='obs'): """Return a list of PosVel instances for the observatory at the TOA times. Observatory location should be given in the loc argument as an astropy EarthLocation object. This location will be in the ITRF frame (i.e. co-rotating with the Earth). The optional obsname argument will be used as label in the returned PosVel instance. This routine returns a list of PosVel instances, containing the positions (m) and velocities (m / s) at the times of the toas and referenced to the Earth-centered Inertial (ECI, aka GCRS) coordinates. This routine is basically SOFA's pvtob() [Position and velocity of a terrestrial observing station] with an extra rotation from c2ixys() [Form the celestial to intermediate-frame-of-date matrix given the CIP X,Y and the CIO locator s]. """ # If the input is a single TOA (i.e. a row from the table), # then put it into a list if type(toas) == table.row.Row: ttoas = Time([toas['mjd']]) N = 1 elif type(toas) == table.table.Table: N = len(toas) ttoas = toas['mjd'] else: if toas.isscalar: ttoas = Time([toas]) else: ttoas = toas N = len(ttoas) # Get various times from the TOAs as arrays tts = np.asarray([(t.jd1, t.jd2) for t in ttoas.tt]).T ut1s = np.asarray([(t.jd1, t.jd2) for t in ttoas.ut1]).T mjds = np.asarray(ttoas.mjd) # Get x, y coords of Celestial Intermediate Pole and CIO locator s X, Y, S = erfa.xys00a(*tts) # Get dX and dY from IERS A in arcsec and convert to radians #dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A_B']) * asec2rad #dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A_B']) * asec2rad # Get dX and dY from IERS B in arcsec and convert to radians dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A']) * asec2rad dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A']) * asec2rad # Get GCRS to CIRS matrices rc2i = erfa.c2ixys(X + dX, Y + dY, S) # Gets the TIO locator s' sp = erfa.sp00(*tts) # Get X and Y from IERS A in arcsec and convert to radians #xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_X_B']) * asec2rad #yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_Y_B']) * asec2rad # Get X and Y from IERS B in arcsec and convert to radians xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_x']) * asec2rad yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_y']) * asec2rad # Get the polar motion matrices rpm = erfa.pom00(xp, yp, sp) # Observatory geocentric coords in m xyzm = np.array([a.to(u.m).value for a in loc.geocentric]) x, y, z = np.dot(xyzm, rpm).T # Functions of Earth Rotation Angle theta = erfa.era00(*ut1s) s, c = np.sin(theta), np.cos(theta) sx, cx = s * x, c * x sy, cy = s * y, c * y # Initial positions and velocities iposs = np.asarray([cx - sy, sx + cy, z]).T ivels = np.asarray([OM * (-sx - cy), OM * (cx - sy), \ np.zeros_like(x)]).T # There is probably a way to do this with np.einsum or something... # and here it is . poss = np.empty((N, 3), dtype=np.float64) vels = np.empty((N, 3), dtype=np.float64) poss = np.einsum('ij,ijk->ik', iposs, rc2i) vels = np.einsum('ij,ijk->ik', ivels, rc2i) return utils.PosVel(poss.T * u.m, vels.T * u.m / u.s, obj=obsname, origin="earth")
def topo_posvels(loc, toas, obsname='obs'): """Return a list of PosVel instances for the observatory at the TOA times. Observatory location should be given in the loc argument as an astropy EarthLocation object. The optional obsname argument will be used as label in the returned PosVel instance. This routine returns a list of PosVel instances, containing the positions (m) and velocities (m / s) at the times of the toas and referenced to the ITRF geocentric coordinates. This routine is basically SOFA's pvtob() with an extra rotation from c2ixys. """ # If the input is a single TOA (i.e. a row from the table), # then put it into a list if type(toas) == table.row.Row: ttoas = Time([toas['mjd']]) N = 1 elif type(toas) == table.table.Table: N = len(toas) ttoas = toas['mjd'] else: if toas.isscalar: ttoas = Time([toas]) else: ttoas = toas N = len(ttoas) # Get various times from the TOAs as arrays tts = np.asarray([(t.jd1, t.jd2) for t in ttoas.tt]).T ut1s = np.asarray([(t.jd1, t.jd2) for t in ttoas.ut1]).T mjds = np.asarray(ttoas.mjd) # Get x, y coords of Celestial Intermediate Pole and CIO locator s X, Y, S = erfa.xys00a(*tts) # Get dX and dY from IERS A in arcsec and convert to radians #dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A_B']) * asec2rad #dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A_B']) * asec2rad # Get dX and dY from IERS B in arcsec and convert to radians dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A']) * asec2rad dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A']) * asec2rad # Get GCRS to CIRS matrices rc2i = erfa.c2ixys(X+dX, Y+dY, S) # Gets the TIO locator s' sp = erfa.sp00(*tts) # Get X and Y from IERS A in arcsec and convert to radians #xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_X_B']) * asec2rad #yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_Y_B']) * asec2rad # Get X and Y from IERS B in arcsec and convert to radians xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_x']) * asec2rad yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_y']) * asec2rad # Get the polar motion matrices rpm = erfa.pom00(xp, yp, sp) # Observatory geocentric coords in m xyzm = np.array([a.to(u.m).value for a in loc.geocentric]) x, y, z = np.dot(xyzm, rpm).T # Functions of Earth Rotation Angle theta = erfa.era00(*ut1s) s, c = np.sin(theta), np.cos(theta) sx, cx = s * x, c * x sy, cy = s * y, c * y # Initial positions and velocities iposs = np.asarray([cx - sy, sx + cy, z]).T ivels = np.asarray([OM * (-sx - cy), OM * (cx - sy), \ np.zeros_like(x)]).T # There is probably a way to do this with np.einsum or something... # and here it is . poss = np.empty((N, 3), dtype=np.float64) vels = np.empty((N, 3), dtype=np.float64) poss = np.einsum('ij,ijk->ik', iposs, rc2i) vels = np.einsum('ij,ijk->ik', ivels, rc2i) return utils.PosVel(poss.T * u.m, vels.T * u.m / u.s, obj=obsname, origin="earth")
def topo_posvels(obsname, toas): """Return a list of PosVel instances for the observatory at the TOA times This routine returns a list of PosVel instances, containing the positions (m) and velocities (m / s) at the times of the toas and referenced to the ITRF geocentric coordinates. This routine is basically SOFA's pvtob() with an extra rotation from c2ixys. """ # If the input is a single TOA (i.e. a row from the table), # then put it into a list if type(toas) == table.row.Row: ttoas = [toas['mjd']] N = 1 else: N = len(toas) ttoas = toas['mjd'] # Get various times from the TOAs as arrays tts = np.asarray([(toa.tt.jd1, toa.tt.jd2) for toa in ttoas]).T ut1s = np.asarray([(toa.ut1.jd1, toa.ut1.jd2) for toa in ttoas]).T mjds = np.asarray([toa.mjd for toa in ttoas]) # Get x, y coords of Celestial Intermediate Pole and CIO locator s X, Y, S = erfa.xys00a(*tts) # Get dX and dY from IERS A in arcsec and convert to radians #dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A_B']) * asec2rad #dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A_B']) * asec2rad # Get dX and dY from IERS B in arcsec and convert to radians dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A']) * asec2rad dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A']) * asec2rad # Get GCRS to CIRS matrices rc2i = erfa.c2ixys(X + dX, Y + dY, S) # Gets the TIO locator s' sp = erfa.sp00(*tts) # Get X and Y from IERS A in arcsec and convert to radians #xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_X_B']) * asec2rad #yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_Y_B']) * asec2rad # Get X and Y from IERS B in arcsec and convert to radians xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_x']) * asec2rad yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_y']) * asec2rad # Get the polar motion matrices rpm = erfa.pom00(xp, yp, sp) # Observatory geocentric coords in m xyzm = np.array([a.to(u.m).value for a in \ observatories[obsname].loc.geocentric]) x, y, z = np.dot(xyzm, rpm).T # Functions of Earth Rotation Angle theta = erfa.era00(*ut1s) s, c = np.sin(theta), np.cos(theta) sx, cx = s * x, c * x sy, cy = s * y, c * y # Initial positions and velocities iposs = np.asarray([cx - sy, sx + cy, z]).T ivels = np.asarray([OM * (-sx - cy), OM * (cx - sy), \ np.zeros_like(x)]).T # There is probably a way to do this with np.einsum or something... poss = np.empty((N, 3), dtype=np.float64) vels = np.empty((N, 3), dtype=np.float64) for ii in range(N): poss[ii] = np.dot(iposs[ii], rc2i[ii]) vels[ii] = np.dot(ivels[ii], rc2i[ii]) # Make a PosVel list for return pvs = [utils.PosVel(p, v, obj=obsname, origin="EARTH") \ for p, v in zip(poss * u.m, vels * u.m / u.s)] return pvs
def topo_posvels(obsname, toas): """Return a list of PosVel instances for the observatory at the TOA times This routine returns a list of PosVel instances, containing the positions (m) and velocities (m / s) at the times of the toas and referenced to the ITRF geocentric coordinates. This routine is basically SOFA's pvtob() with an extra rotation from c2ixys. """ # If the input is a single TOA (i.e. a row from the table), # then put it into a list if type(toas) == table.row.Row: ttoas = [toas['mjd']] N = 1 else: N = len(toas) ttoas = toas['mjd'] # Get various times from the TOAs as arrays tts = np.asarray([(toa.tt.jd1, toa.tt.jd2) for toa in ttoas]).T ut1s = np.asarray([(toa.ut1.jd1, toa.ut1.jd2) for toa in ttoas]).T mjds = np.asarray([toa.mjd for toa in ttoas]) # Get x, y coords of Celestial Intermediate Pole and CIO locator s X, Y, S = erfa.xys00a(*tts) # Get dX and dY from IERS A in arcsec and convert to radians #dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A_B']) * asec2rad #dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A_B']) * asec2rad # Get dX and dY from IERS B in arcsec and convert to radians dX = np.interp(mjds, iers_tab['MJD'], iers_tab['dX_2000A']) * asec2rad dY = np.interp(mjds, iers_tab['MJD'], iers_tab['dY_2000A']) * asec2rad # Get GCRS to CIRS matrices rc2i = erfa.c2ixys(X+dX, Y+dY, S) # Gets the TIO locator s' sp = erfa.sp00(*tts) # Get X and Y from IERS A in arcsec and convert to radians #xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_X_B']) * asec2rad #yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_Y_B']) * asec2rad # Get X and Y from IERS B in arcsec and convert to radians xp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_x']) * asec2rad yp = np.interp(mjds, iers_tab['MJD'], iers_tab['PM_y']) * asec2rad # Get the polar motion matrices rpm = erfa.pom00(xp, yp, sp) # Observatory geocentric coords in m xyzm = np.array([a.to(u.m).value for a in \ observatories[obsname].loc.geocentric]) x, y, z = np.dot(xyzm, rpm).T # Functions of Earth Rotation Angle theta = erfa.era00(*ut1s) s, c = np.sin(theta), np.cos(theta) sx, cx = s * x, c * x sy, cy = s * y, c * y # Initial positions and velocities iposs = np.asarray([cx - sy, sx + cy, z]).T ivels = np.asarray([OM * (-sx - cy), OM * (cx - sy), \ np.zeros_like(x)]).T # There is probably a way to do this with np.einsum or something... poss = np.empty((N, 3), dtype=np.float64) vels = np.empty((N, 3), dtype=np.float64) for ii in range(N): poss[ii] = np.dot(iposs[ii], rc2i[ii]) vels[ii] = np.dot(ivels[ii], rc2i[ii]) # Make a PosVel list for return pvs = [utils.PosVel(p, v, obj=obsname, origin="EARTH") \ for p, v in zip(poss * u.m, vels * u.m / u.s)] return pvs