Ejemplo n.º 1
0
    def params(cls, config=None):
        """ Set params.

        Args:
            config: contains the following four optional parameters:

            'type': Type of Opration. (string, default = 'CMVN')
            'global_mean': Global mean of features. (float, default = 0.0)
            'global_variance': Global variance of features. (float, default = 1.0)
            'local_cmvn': If ture, local cmvn will be done on features. (bool, default = False)

        Note:
            Return an object of class HParams, which is a set of hyperparameters as
            name-value pairs.
        """

        hparams = HParams(cls=cls)
        hparams.add_hparam("type", "CMVN")
        hparams.add_hparam("global_mean", [0.0])
        hparams.add_hparam("global_variance", [1.0])
        hparams.add_hparam("local_cmvn", False)

        if config is not None:
            hparams.parse(config, True)

        assert len(hparams.global_mean) == len(
            hparams.global_variance
        ), "Error, global_mean length {} is not equals to global_variance length {}".format(
            len(hparams.global_mean), len(hparams.global_variance)
        )

        hparams.global_variance = (np.sqrt(hparams.global_variance) + 1e-6).tolist()
        return hparams
Ejemplo n.º 2
0
    def params(cls, config=None):
        """ set params """

        hparams = HParams(cls=cls)
        hparams.add_hparam("type", "CMVN")
        hparams.add_hparam("global_mean", [0.0])
        hparams.add_hparam("global_variance", [1.0])
        hparams.add_hparam("local_cmvn", False)

        if config is not None:
            hparams.parse(config, True)

        assert len(hparams.global_mean) == len(
            hparams.global_variance
        ), "Error, global_mean length {} is not equals to global_variance length {}".format(
            len(hparams.global_mean), len(hparams.global_variance))

        hparams.global_variance = (np.sqrt(hparams.global_variance) +
                                   1e-6).tolist()
        return hparams