def driving_position(data): ''' Moves the robot to the driving position ''' # Make the element we'll be using to run the demo run_element = Element("run_demo") # turn on control set_control(run_element, True) res = run_element.command_send( "robot_api", "trajectory_fastest", { "t": [["joint_0", [-1.29638671875]], ["joint_1", [140]], ["joint_2", [-140]], ["joint_3", [0]], ["joint_4", [0]], ["joint_5", [0]]], "v": VEL, "a": ACCEL }, serialize=True) if (res['err_code'] != 0): return Response(err_code=1, err_str="Failed to move to driving position", serialize=True) return Response("Success", serialize=True)
def __init__(self, mode="both", input_size=512, scaling_factor=2, config_path="sd-maskrcnn/cfg/benchmark.yaml"): self.element = Element("instance-segmentation") self.input_size = input_size self.scaling_factor = scaling_factor self.config_path = config_path self.mode = mode # Streaming of masks is disabled by default to prevent consumption of resources self.stream_enabled = False config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 config.gpu_options.visible_device_list = "0" set_session(tf.Session(config=config)) self.set_mode(b"both") # Initiate tensorflow graph before running threads self.get_masks() self.element.command_add("segment", self.segment, 10000) self.element.command_add("get_mode", self.get_mode, 100) self.element.command_add("set_mode", self.set_mode, 10000) self.element.command_add("stream", self.set_stream, 100) t = Thread(target=self.element.command_loop, daemon=True) t.start() self.publish_segments()
def run_demo(data): ''' Runs the demo ''' # Make the element we'll be using to run the demo run_element = Element("run_demo") # turn on control set_control(run_element, True) # Note that we haven't found the ball found = False # Run over the observation list for (x, y) in OBSERVATION_LIST: result = scan_height(run_element, x, y) if result is None: found = False continue found = True break # If we found the ball, go ahead and grab it if found: res = run_element.command_send( "ros", "move_to_pos", { "xyz": [result[0] + TRANSFORM_X, result[1] + TRANSFORM_Y, HEIGHT_Z], "rpy": [CAMERA_R, CAMERA_P, CAMERA_Y], "v": VEL, "a": ACCEL }, serialize=True) if (res['err_code'] != 0): return Response(err_code=3, err_str="Failed to move to grasp pos", serialize=True) # Go home res = run_element.command_send("robot_api", "home", {}, serialize=True) if (res['err_code'] != 0): return Response(err_code=4, err_str="Failed to go home", serialize=True) # Based on whether or not we found the ball return an appropriate # response if found: return Response("Success", serialize=True) else: return Response(err_code=5, err_str="Failed to find the ball", serialize=True)
def __init__(self, element_name, width, height, fps, retry_delay): self._width = width self._height = height self._fps = fps self._retry_delay = retry_delay self._status_is_running = False self._status_lock = Lock() # Init element self._element = Element(element_name) self._element.healthcheck_set(self.is_healthy) #self._element.command_add(command_name, command_func_ptr, timeout, serialize) # Run command loop thread = Thread(target=self._element.command_loop, daemon=True) thread.start()
def __init__( self, element_name, transform_file_path, calibration_client_path, depth_shape, color_shape, fps, disparity_shift, depth_units, rotation, retry_delay ): self._transform_file_path = transform_file_path self._calibration_client_path = calibration_client_path self._depth_shape = depth_shape self._color_shape = color_shape self._fps = fps self.disparity_shift = disparity_shift self.depth_units = depth_units self._rotation = rotation self._retry_delay = retry_delay self._status_is_running = False self._status_lock = Lock() self._pipeline = rs.pipeline() self._rs_pc = rs.pointcloud() self._transform = TransformStreamContract(x=0, y=0, z=0, qx=0, qy=0, qz=0, qw=1) self._transform_last_loaded = 0 # Create an align object: rs.align allows us to perform alignment of depth frames to other frames self._align = rs.align(rs.stream.color) # Init element self._element = Element(element_name) self._element.healthcheck_set(self.is_healthy) self._element.command_add( CalculateTransformCommand.COMMAND_NAME, self.run_transform_estimator, timeout=2000, deserialize=CalculateTransformCommand.Request.SERIALIZE ) # Run command loop thread = Thread(target=self._element.command_loop, daemon=True) thread.start()
def home(data): ''' Moves the robot home ''' # Make the element we'll be using to run the demo run_element = Element("run_demo") res = run_element.command_send("robot_api", "home", { "v": VEL, "a": ACCEL }, serialize=True) if (res['err_code'] != 0): return Response(err_code=1, err_str="Failed to move to home position", serialize=True) # turn off control set_control(run_element, False) return Response("Success", serialize=True)
def main(): parser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--credentials', type=existing_file, metavar='OAUTH2_CREDENTIALS_FILE', default=os.path.join(os.path.expanduser('~/.config'), 'google-oauthlib-tool', 'credentials.json'), help='Path to store and read OAuth2 credentials') parser.add_argument('--device_model_id', type=str, metavar='DEVICE_MODEL_ID', required=True, help='The device model ID registered with Google') parser.add_argument('-v', '--version', action='version', version='%(prog)s ' + Assistant.__version_str__()) args = parser.parse_args() with open(args.credentials, 'r') as f: credentials = google.oauth2.credentials.Credentials(token=None, **json.load(f)) # Set up the sound thread sound_queue = Queue() sound_thread = Process(target=sound_playback_thread, args=(sound_queue, )) sound_thread.start() # Set up the process that will play sounds for other processes. This # is needed until we get a shared PulseAudio system up and running # s.t. all elements can play their own sounds sound_element = Process(target=sound_element_thread, args=(sound_queue, )) sound_element.start() with Assistant(credentials, args.device_model_id) as assistant: # Create our element element = Element("voice") # Start the assistant events = assistant.start() for event in events: process_event(event, assistant, element, sound_queue)
def sound_element_thread(sound_queue): """ Registers all of the sound playback commands for this element and handles when they're called """ elem = Element("sound") # Register our callback to play sounds elem_class = SoundElement(sound_queue) elem.command_add("play_sound", elem_class.command_cb) elem.command_loop()
# atombot.py from atom import Element from atom.messages import Response from threading import Thread import pdb import time PUBLISH_FREQUENCY = 100 TIME_FOR_WAVEFORM = 5 if __name__ == "__main__": element = Element("voice_demo") # Wait for the record element to start up and launch the VNC. # this can and should be fixed with a heartbeat! time.sleep(10) # Start the recording and wait for 5s data = { "name": "example", "t": TIME_FOR_WAVEFORM, "perm": False, "e": "waveform", "s": "serialized" } res = element.command_send("record", "start", data, serialize=True) time.sleep(TIME_FOR_WAVEFORM + 2) # Strings we'll recognize for the plotting commands. This is pretty # rudimentary and can be improved with some better parsing/processing/NLP
class Realsense: def __init__( self, element_name, transform_file_path, calibration_client_path, depth_shape, color_shape, fps, disparity_shift, depth_units, rotation, retry_delay ): self._transform_file_path = transform_file_path self._calibration_client_path = calibration_client_path self._depth_shape = depth_shape self._color_shape = color_shape self._fps = fps self.disparity_shift = disparity_shift self.depth_units = depth_units self._rotation = rotation self._retry_delay = retry_delay self._status_is_running = False self._status_lock = Lock() self._pipeline = rs.pipeline() self._rs_pc = rs.pointcloud() self._transform = TransformStreamContract(x=0, y=0, z=0, qx=0, qy=0, qz=0, qw=1) self._transform_last_loaded = 0 # Create an align object: rs.align allows us to perform alignment of depth frames to other frames self._align = rs.align(rs.stream.color) # Init element self._element = Element(element_name) self._element.healthcheck_set(self.is_healthy) self._element.command_add( CalculateTransformCommand.COMMAND_NAME, self.run_transform_estimator, timeout=2000, deserialize=CalculateTransformCommand.Request.SERIALIZE ) # Run command loop thread = Thread(target=self._element.command_loop, daemon=True) thread.start() def is_healthy(self): """ Reports whether the realsense is connected and streaming or not """ try: self._status_lock.acquire() if self._status_is_running: return Response(err_code=0, err_str="Realsense online") else: return Response(err_code=1, err_str="Waiting for realsense") finally: self._status_lock.release() def load_transform_from_file(self, fname): """ Opens specified file, reads transform, and returns as list. Args: fname (str): CSV file that stores the transform """ with open(fname, "r") as f: transform_list = [float(v) for v in f.readlines()[-1].split(",")] return TransformStreamContract( x=transform_list[0], y=transform_list[1], z=transform_list[2], qx=transform_list[3], qy=transform_list[4], qz=transform_list[5], qw=transform_list[6] ) def run_transform_estimator(self, *args): """ Runs the transform estimation procedure, which saves the transform to disk. """ process = subprocess.Popen(self._calibration_client_path, stderr=subprocess.PIPE) out, err = process.communicate() return Response( data=CalculateTransformCommand.Response().to_data(), err_code=process.returncode, err_str=err.decode(), serialize=CalculateTransformCommand.Response.SERIALIZE ) def run_camera_stream(self): while True: try: # Try to establish realsense connection self._element.log(LogLevel.INFO, "Attempting to connect to Realsense") # Set disparity shift device = rs.context().query_devices()[0] advnc_mode = rs.rs400_advanced_mode(device) depth_table_control_group = advnc_mode.get_depth_table() depth_table_control_group.disparityShift = self.disparity_shift advnc_mode.set_depth_table(depth_table_control_group) # Attempt to stream accel and gyro data, which requires d435i # If we can't then we revert to only streaming depth and color try: config = rs.config() config.enable_stream( rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps ) config.enable_stream( rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps ) config.enable_stream(rs.stream.accel) config.enable_stream(rs.stream.gyro) profile = self._pipeline.start(config) is_d435i = True except RuntimeError: config = rs.config() config.enable_stream( rs.stream.depth, self._depth_shape[0], self._depth_shape[1], rs.format.z16, self._fps ) config.enable_stream( rs.stream.color, self._color_shape[0], self._color_shape[1], rs.format.bgr8, self._fps ) profile = self._pipeline.start(config) is_d435i = False # Set depth units depth_sensor = profile.get_device().first_depth_sensor() depth_sensor.set_option(rs.option.depth_units, self.depth_units) # Publish intrinsics rs_intrinsics = profile.get_stream(rs.stream.color).as_video_stream_profile().get_intrinsics() intrinsics = IntrinsicsStreamContract( width=rs_intrinsics.width, height=rs_intrinsics.height, ppx=rs_intrinsics.ppx, ppy=rs_intrinsics.ppy, fx=rs_intrinsics.fx, fy=rs_intrinsics.fy ) self._element.entry_write( IntrinsicsStreamContract.STREAM_NAME, intrinsics.to_dict(), serialize=IntrinsicsStreamContract.SERIALIZE, maxlen=self._fps ) try: self._status_lock.acquire() self._status_is_running = True finally: self._status_lock.release() self._element.log(LogLevel.INFO, "Realsense connected and streaming") while True: start_time = time.time() frames = self._pipeline.wait_for_frames() aligned_frames = self._align.process(frames) depth_frame = aligned_frames.get_depth_frame() color_frame = aligned_frames.get_color_frame() # Validate that frames are valid if not depth_frame or not color_frame: continue # Generate realsense pointcloud self._rs_pc.map_to(color_frame) points = self._rs_pc.calculate(depth_frame) # Convert data to numpy arrays depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) vertices = np.asanyarray(points.get_vertices()) vertices = vertices.view(np.float32).reshape(vertices.shape + (-1,)) if self._rotation is not None: depth_image = np.rot90(depth_image, k=self._rotation / 90) color_image = np.rot90(color_image, k=self._rotation / 90) # TODO: Apply rotation to pointcloud _, color_serialized = cv2.imencode(".tif", color_image) _, depth_serialized = cv2.imencode(".tif", depth_image) _, pc_serialized = cv2.imencode(".tif", vertices) if is_d435i: accel = frames[2].as_motion_frame().get_motion_data() gyro = frames[3].as_motion_frame().get_motion_data() accel_data = AccelStreamContract(x=accel.x, y=accel.y, z=accel.z) gyro_data = GyroStreamContract(x=gyro.x, y=gyro.y, z=gyro.z) self._element.entry_write( AccelStreamContract.STREAM_NAME, accel_data.to_dict(), serialize=AccelStreamContract.SERIALIZE, maxlen=self._fps ) self._element.entry_write( GyroStreamContract.STREAM_NAME, gyro_data.to_dict(), serialize=GyroStreamContract.SERIALIZE, maxlen=self._fps ) color_contract = ColorStreamContract(data=color_serialized.tobytes()) depth_contract = DepthStreamContract(data=depth_serialized.tobytes()) pc_contract = PointCloudStreamContract(data=pc_serialized.tobytes()) self._element.entry_write( ColorStreamContract.STREAM_NAME, color_contract.to_dict(), serialize=ColorStreamContract.SERIALIZE, maxlen=self._fps ) self._element.entry_write( DepthStreamContract.STREAM_NAME, depth_contract.to_dict(), serialize=DepthStreamContract.SERIALIZE, maxlen=self._fps ) self._element.entry_write( PointCloudStreamContract.STREAM_NAME, pc_contract.to_dict(), serialize=PointCloudStreamContract.SERIALIZE, maxlen=self._fps ) # Load transform from file if the file exists # and has been modified since we last checked if os.path.exists(self._transform_file_path): transform_last_modified = os.stat(self._transform_file_path).st_mtime if transform_last_modified > self._transform_last_loaded: try: self._transform = self.load_transform_from_file(self._transform_file_path) self._transform_last_loaded = time.time() except Exception as e: self._element.log(LogLevel.ERR, str(e)) self._element.entry_write( TransformStreamContract.STREAM_NAME, self._transform.to_dict(), serialize=TransformStreamContract.SERIALIZE, maxlen=self._fps ) time.sleep(max(1 / self._fps - (time.time() - start_time), 0)) except: self._element.log(LogLevel.INFO, "Camera loop threw exception: %s" % (sys.exc_info()[1])) finally: # If camera fails to init or crashes, update status and retry connection try: self._status_lock.acquire() self._status_is_running = False finally: self._status_lock.release() try: self._pipeline.stop() except: pass time.sleep(self._retry_delay)
def __init__(self): self.element = Element(f"atom-cli_{uname().nodename}_{uuid4().hex}") self.indent = 2 self.style = Style.from_dict({ "logo_color": "#6039C8", }) self.session = PromptSession(style=self.style) self.print_atom_os_logo() self.serialization = "msgpack" self.cmd_map = { "help": self.cmd_help, "list": self.cmd_list, "records": self.cmd_records, "command": self.cmd_command, "read": self.cmd_read, "exit": self.cmd_exit, "serialization": self.cmd_serialization, } self.usage = { "cmd_help": cleandoc(""" Displays available commands and shows usage for commands. Usage: help [<command>]"""), "cmd_list": cleandoc(""" Displays available elements, streams, or commands. Can filter streams and commands based on element. Usage: list elements list streams [<element>] list commands [<element>]"""), "cmd_records": cleandoc(""" Displays log records or command and response records. Can filter records from the last N seconds or from certain elements. Usage: records log [<last_N_seconds>] [<element>...] records cmdres [<last_N_seconds>] <element>..."""), "cmd_command": cleandoc(""" Sends a command to an element and displays the response. Usage: command <element> <element_command> [<data>]"""), "cmd_read": cleandoc(""" Displays the entries of an element's stream. Can provide a rate to print the entries for ease of reading. Usage: read <element> <stream> [<rate_hz>]"""), "cmd_exit": cleandoc(""" Exits the atom-cli tool. Can also use the shortcut CTRL+D. Usage: exit"""), "cmd_serialization": cleandoc(""" Sets serialization/deserialization setting to either use msgpack, Apache arrow, or no (de)serialization. Defaults to msgpack serialization. This setting is overriden by deserialization keys received in stream. Usage: serialization (msgpack | arrow | none)"""), }
class AtomCLI: def __init__(self): self.element = Element(f"atom-cli_{uname().nodename}_{uuid4().hex}") self.indent = 2 self.style = Style.from_dict({ "logo_color": "#6039C8", }) self.session = PromptSession(style=self.style) self.print_atom_os_logo() self.serialization = "msgpack" self.cmd_map = { "help": self.cmd_help, "list": self.cmd_list, "records": self.cmd_records, "command": self.cmd_command, "read": self.cmd_read, "exit": self.cmd_exit, "serialization": self.cmd_serialization, } self.usage = { "cmd_help": cleandoc(""" Displays available commands and shows usage for commands. Usage: help [<command>]"""), "cmd_list": cleandoc(""" Displays available elements, streams, or commands. Can filter streams and commands based on element. Usage: list elements list streams [<element>] list commands [<element>]"""), "cmd_records": cleandoc(""" Displays log records or command and response records. Can filter records from the last N seconds or from certain elements. Usage: records log [<last_N_seconds>] [<element>...] records cmdres [<last_N_seconds>] <element>..."""), "cmd_command": cleandoc(""" Sends a command to an element and displays the response. Usage: command <element> <element_command> [<data>]"""), "cmd_read": cleandoc(""" Displays the entries of an element's stream. Can provide a rate to print the entries for ease of reading. Usage: read <element> <stream> [<rate_hz>]"""), "cmd_exit": cleandoc(""" Exits the atom-cli tool. Can also use the shortcut CTRL+D. Usage: exit"""), "cmd_serialization": cleandoc(""" Sets serialization/deserialization setting to either use msgpack, Apache arrow, or no (de)serialization. Defaults to msgpack serialization. This setting is overriden by deserialization keys received in stream. Usage: serialization (msgpack | arrow | none)"""), } def run(self): """ The main loop of the CLI. Reads the user input, verifies the command exists and calls the command. """ while True: try: inp = self.session.prompt( "\n> ", auto_suggest=AutoSuggestFromHistory()).split(" ") if not inp: continue command, args = inp[0], inp[1:] if command not in self.cmd_map.keys(): print("Invalid command. Type 'help' for valid commands.") else: self.cmd_map[command](*args) # Handle CTRL+C so user can break loops without exiting except KeyboardInterrupt: pass # Exit on CTRL+D except EOFError: self.cmd_exit() except Exception as e: print(str(type(e)) + " " + str(e)) def print_atom_os_logo(self): f = Figlet(font="slant") logo = f.renderText("ATOM OS") print(HTML(f"<logo_color>{logo}</logo_color>"), style=self.style) def format_record(self, record): """ Takes a record out of Redis, decodes the keys and values (if possible) and returns a formatted json string sorted by keys. """ formatted_record = {} for k, v in record.items(): if type(k) is bytes: k = k.decode() if not self.serialization: try: v = v.decode() except: v = str(v) formatted_record[k] = v sorted_record = {k: v for k, v in sorted( formatted_record.items(), key=lambda x: x[0])} try: ret = json.dumps(sorted_record, indent=self.indent) except TypeError as te: ret = sorted_record finally: return ret def cmd_help(self, *args): usage = self.usage["cmd_help"] if len(args) > 1: print(usage) print("\nToo many arguments to 'help'.") return if args: # Prints the usage of the command if args[0] in self.cmd_map.keys(): print(self.usage[f"cmd_{args[0]}"]) else: print(f"Command {args[0]} does not exist.") else: print("Try 'help <command>' for usage on a command") print("Available commands:") for command in self.cmd_map.keys(): print(f" {command}") def cmd_list(self, *args): usage = self.usage["cmd_list"] mode_map = { "elements": self.element.get_all_elements, "streams": self.element.get_all_streams, "commands": self.element.get_all_commands } if not args: print(usage) print("\n'list' must have an argument.") return mode = args[0] if mode not in mode_map.keys(): print(usage) print("\nInvalid argument to 'list'.") return if len(args) > 1 and mode == "elements": print(usage) print(f"\nInvalid number of arguments for command 'list elements'.") return if len(args) > 2: print(usage) print("\n'list' takes at most 2 arguments.") return items = mode_map[mode](*args[1:]) if not items: print(f"No {mode} exist.") return for item in items: print(item) def cmd_records(self, *args): usage = self.usage["cmd_records"] if not args: print(usage) print("\n'records' must have an argument.") return mode = args[0] # Check for start time if len(args) > 1 and args[1].isdigit(): ms = int(args[1]) * 1000 start_time = str(int(self.element._get_redis_timestamp()) - ms) elements = set(args[2:]) # If no start time, go from the very beginning else: start_time = "0" elements = set(args[1:]) if mode == "log": records = self.mode_log(start_time, elements) elif mode == "cmdres": if not elements: print(usage) print( "\nMust provide elements from which to get command response streams from.") return records = self.mode_cmdres(start_time, elements) else: print(usage) print("\nInvalid argument to 'records'.") return if not records: print("No records.") return for record in records: print(self.format_record(record)) def mode_log(self, start_time, elements): """ Reads the logs from Atom's log stream. Args: start_time (str): The time from which to start reading logs. elements (list): The elements on which to filter the logs for. """ records = [] all_records = self.element.entry_read_since( None, "log", start_time, serialization=None) for record in all_records: if not elements or record["element"].decode() in elements: record = {key: (value if isinstance(value, str) else value.decode( )) for key, value in record.items()} # Decode strings only which are required to records.append(record) return records def mode_cmdres(self, start_time, elements): """ Reads the command and response records from the provided elements. Args: start_time (str): The time from which to start reading logs. elements (list): The elements to get the command and response records from. """ streams, records = [], [] for element in elements: streams.append(self.element._make_response_id(element)) streams.append(self.element._make_command_id(element)) for stream in streams: cur_records = self.element.entry_read_since( None, stream, start_time, serialization=None) for record in cur_records: for key, value in record.items(): try: if not isinstance(value, str): value = value.decode() except: try: value = ser.deserialize(value, method=self.serialization) except: pass finally: record[key] = value record["type"], record["element"] = stream.split(":") records.append(record) return sorted(records, key=lambda x: (x["id"], x["type"])) def cmd_command(self, *args): usage = self.usage["cmd_command"] if len(args) < 2: print(usage) print("\nToo few arguments.") return element_name = args[0] command_name = args[1] if len(args) >= 3: data = str(" ".join(args[2:])) if self.serialization: try: data = json.loads(data) except: print("Received improperly formatted data!") return else: data = "" resp = self.element.command_send(element_name, command_name, data, serialize=(self.serialization is not None), deserialize=(self.serialization is not None), serialization=self.serialization) # shouldn't be used if it's None print(self.format_record(resp)) def cmd_read(self, *args): usage = self.usage["cmd_read"] if len(args) < 2: print(usage) print("\nToo few arguments.") return if len(args) > 3: print(usage) print("\nToo many arguments.") return if len(args) == 3: try: rate = float(args[2]) if rate < 0: raise ValueError() except ValueError: print("rate must be an float greater than 0.") return else: rate = None element_name, stream_name = args[:2] last_timestamp = None while True: start_time = time.time() entries = self.element.entry_read_n(element_name, stream_name, 1, deserialize=(self.serialization is not None), serialization=self.serialization) # shouldn't be used if it's None if not entries: print(f"No data from {element_name} {stream_name}.") return entry = entries[0] timestamp = entry["id"] # Only print the entry if it is different from the previous one if timestamp != last_timestamp: last_timestamp = timestamp print(self.format_record(entry)) if rate: time.sleep(max(1 / rate - (time.time() - start_time), 0)) def cmd_serialization(self, *args): usage = self.usage["cmd_serialization"] if (len(args) != 1): print(usage) print(f"\nPass one argument: {ser.Serializations.print_values()}.") return # Otherwise try to get the new setting if ser.is_valid_serialization(args[0].lower()): self.serialization = args[0].lower() if args[0].lower() != "none" else None else: print(f"\nArgument must be one of {ser.Serializations.print_values()}.") print("Current serialization status is {}".format(self.serialization)) def cmd_exit(*args): print("Exiting.") sys.exit()
pos_map[cur_pos] = self.atombot return_str = " ".join(pos_map) return return_str finally: self.bot_lock.release() def is_healthy(self): # This is an example health-check, which can be used to tell other elements that depend on you # whether you are ready to receive commands or not. Any non-zero error code means you are unhealthy. return Response(err_code=0, err_str="Everything is good") if __name__ == "__main__": print("Launching...") # Create our element and call it "atombot" element = Element("atombot") # Instantiate our AtomBot class atombot = AtomBot() # We add a healthcheck to our atombot element. # This is optional. If you don't do this, atombot is assumed healthy as soon as its command_loop executes element.healthcheck_set(atombot.is_healthy) # This registers the relevant AtomBot methods as a command in the atom system # We set the timeout so the caller will know how long to wait for the command to execute element.command_add("move_left", atombot.move_left, timeout=50, deserialize=True) element.command_add("move_right",
buff = "{},".format(x_val) # And add each item from the iterable try: for v in val: buff += "{},".format(v) except: buff += "{}".format(val) # Finish off with a newline and write to file buff += "\n" files[key].write(buff) # And note the success return Response("Success", serialize=True) if __name__ == '__main__': elem = Element("record") elem.command_add("start", start_recording, timeout=1000, deserialize=True) elem.command_add("stop", stop_recording, timeout=1000, deserialize=True) elem.command_add("wait", wait_recording, timeout=60000, deserialize=True) elem.command_add("list", list_recordings, timeout=1000) elem.command_add("get", get_recording, timeout=1000, deserialize=True) elem.command_add("plot", plot_recording, timeout=1000000, deserialize=True) elem.command_add("csv", csv_recording, timeout=10000, deserialize=True) # Want to launch the plot thread s.t. our plot API can return quickly elem.command_loop()
def record_fn(name, n_entries, n_sec, perm, element, stream): ''' Mainloop for a recording thread. Creates a new element with the proper name and listens on and records the stream until we're told to stop ''' global active_recordings # Make an element from the name record_elem = Element("record_" + name) # Open the file for the recording filename = os.path.join(PERM_RECORDING_LOC if perm else TEMP_RECORDING_LOC, name + RECORDING_EXTENSION) try: record_file = open(filename, 'wb') except: record_elem.log(LogLevel.ERR, "Unable to open file {}".format(filename)) del active_recordings[name] return # At the outer loop, we want to loop until we've been cancelled last_id = "$" intervals = 0 entries_read = 0 while name in active_recordings: # Read the data data = record_elem.entry_read_since(element, stream, last_id, n=n_entries, block=BLOCK_MS) # If we got no data, then we should finish up if len(data) == 0: record_elem.log( LogLevel.ERR, "Recording {}: no data after {} entries read!".format( name, entries_read)) break entries_read += len(data) # We're going to pack up each entry into a msgpack item and # then write it to the file. If it's already msgpack'd # that's totally fine, this will just pack up the keys and ID for entry in data: packed_data = msgpack.packb(entry, use_bin_type=True) # Write the packed data to file record_file.write(packed_data) # If n_entries is not none then we want to subtract # off the number of entries left and perhaps break out if n_entries is not None: n_enties -= len(data) if (n_enties <= 0): break # Otherwise see if we've recorded for longer than our # elapsed time else: intervals += 1 if (intervals * POLL_INTERVAL) >= n_sec: break # If we got here, we should sleep for the interval before # making the next call time.sleep(POLL_INTERVAL) # And update the last ID last_id = data[-1]["id"] # Once we're out of here we want to note that we're no longer # active in the global system. It might be that someone else popped # it out through already in the "stop" command if name in active_recordings: thread = active_recordings.pop(name) # And we want to close the file record_file.close() # And log that we completed the recording record_elem.log( LogLevel.INFO, "Finished recording {} with {} entries read".format( name, entries_read))
from atom import Element from atom.messages import Response import time import math import pdb element = Element("python_demo") ### element name , command, data res = elemend.command_send("robot_api", "control", True) pdb.set_trace()
run_element = Element("run_demo") res = run_element.command_send("robot_api", "home", { "v": VEL, "a": ACCEL }, serialize=True) if (res['err_code'] != 0): return Response(err_code=1, err_str="Failed to move to home position", serialize=True) # turn off control set_control(run_element, False) return Response("Success", serialize=True) if __name__ == '__main__': ''' Mainloop, wait for the command to run the grab and then do the grab ''' element = Element("demo") element.command_add("run", run_demo, timeout=60000) element.command_add("driving_position", driving_position, timeout=10000) element.command_add("home", home, timeout=10000) element.command_loop()
class SDMaskRCNNEvaluator: def __init__(self, mode="both", input_size=512, scaling_factor=2, config_path="sd-maskrcnn/cfg/benchmark.yaml"): self.element = Element("instance-segmentation") self.input_size = input_size self.scaling_factor = scaling_factor self.config_path = config_path self.mode = mode # Streaming of masks is disabled by default to prevent consumption of resources self.stream_enabled = False config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 config.gpu_options.visible_device_list = "0" set_session(tf.Session(config=config)) self.set_mode(b"both") # Initiate tensorflow graph before running threads self.get_masks() self.element.command_add("segment", self.segment, 10000) self.element.command_add("get_mode", self.get_mode, 100) self.element.command_add("set_mode", self.set_mode, 10000) self.element.command_add("stream", self.set_stream, 100) t = Thread(target=self.element.command_loop, daemon=True) t.start() self.publish_segments() def get_mode(self, _): """ Returns the current mode of the algorithm (both or depth). """ return Response(self.mode) def set_mode(self, data): """ Sets the mode of the algorithm and loads the corresponding weights. 'both' means that the algorithm is considering grayscale and depth data. 'depth' means that the algorithm only considers depth data. """ mode = data.decode().strip().lower() if mode not in MODES: return Response(f"Invalid mode {mode}") self.mode = mode config = YamlConfig(self.config_path) inference_config = MaskConfig(config['model']['settings']) inference_config.GPU_COUNT = 1 inference_config.IMAGES_PER_GPU = 1 model_path = MODEL_PATHS[self.mode] model_dir, _ = os.path.split(model_path) self.model = modellib.MaskRCNN(mode=config['model']['mode'], config=inference_config, model_dir=model_dir) self.model.load_weights(model_path, by_name=True) self.element.log(LogLevel.INFO, f"Loaded weights from {model_path}") return Response(f"Mode switched to {self.mode}") def set_stream(self, data): """ Sets streaming of segmented masks to true or false. """ data = data.decode().strip().lower() if data == "true": self.stream_enabled = True elif data == "false": self.stream_enabled = False else: return Response(f"Expected bool, got {type(data)}.") return Response(f"Streaming set to {self.stream_enabled}") def inpaint(self, img, missing_value=0): """ Fills the missing values of the depth data. """ # cv2 inpainting doesn't handle the border properly # https://stackoverflow.com/questions/25974033/inpainting-depth-map-still-a-black-image-border img = cv2.copyMakeBorder(img, 1, 1, 1, 1, cv2.BORDER_DEFAULT) mask = (img == missing_value).astype(np.uint8) # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. scale = np.abs(img).max() img = img.astype( np.float32) / scale # Has to be float32, 64 not supported. img = cv2.inpaint(img, mask, 1, cv2.INPAINT_NS) # Back to original size and value range. img = img[1:-1, 1:-1] img = img * scale return img def normalize(self, img, max_dist=1000): """ Scales the range of the data to be in 8-bit. Also shifts the values so that maximum is 255. """ img = np.clip(img / max_dist, 0, 1) * 255 img = np.clip(img + (255 - img.max()), 0, 255) return img.astype(np.uint8) def scale_and_square(self, img, scaling_factor, size): """ Scales the image by scaling_factor and creates a border around the image to match size. Reducing the size of the image tends to improve the output of the model. """ img = cv2.resize(img, (int(img.shape[1] / scaling_factor), int(img.shape[0] / scaling_factor)), interpolation=cv2.INTER_NEAREST) v_pad, h_pad = (size - img.shape[0]) // 2, (size - img.shape[1]) // 2 img = cv2.copyMakeBorder(img, v_pad, v_pad, h_pad, h_pad, cv2.BORDER_REPLICATE) return img def unscale(self, results, scaling_factor, size): """ Takes the results of the model and transforms them back into the original dimensions of the input image. """ masks = results["masks"].astype(np.uint8) masks = cv2.resize(masks, (int(masks.shape[1] * scaling_factor), int(masks.shape[0] * scaling_factor)), interpolation=cv2.INTER_NEAREST) v_pad, h_pad = (masks.shape[0] - size[0]) // 2, (masks.shape[1] - size[1]) // 2 masks = masks[v_pad:-v_pad, h_pad:-h_pad] rois = results["rois"] * scaling_factor for roi in rois: roi[0] = min(max(0, roi[0] - v_pad), size[0]) roi[1] = min(max(0, roi[1] - h_pad), size[1]) roi[2] = min(max(0, roi[2] - v_pad), size[0]) roi[3] = min(max(0, roi[3] - h_pad), size[1]) return masks, rois def publish_segments(self): """ Publishes visualization of segmentation masks continuously. """ self.colors = [] for i in range(NUM_OF_COLORS): self.colors.append((np.random.rand(3) * 255).astype(int)) while True: if not self.stream_enabled: time.sleep(1 / PUBLISH_RATE) continue start_time = time.time() scores, masks, rois, color_img = self.get_masks() masked_img = np.zeros(color_img.shape).astype("uint8") contour_img = np.zeros(color_img.shape).astype("uint8") if masks is not None and scores.size != 0: number_of_masks = masks.shape[-1] # Calculate the areas of masks mask_areas = [] for i in range(number_of_masks): width = np.abs(rois[i][0] - rois[i][2]) height = np.abs(rois[i][1] - rois[i][3]) mask_area = width * height mask_areas.append(mask_area) np_mask_areas = np.array(mask_areas) mask_indices = np.argsort(np_mask_areas) # Add masks in the order of there areas. for i in mask_indices: if (scores[i] > SEGMENT_SCORE): indices = np.where(masks[:, :, i] == 1) masked_img[indices[0], indices[1], :] = self.colors[i] # Smoothen masks masked_img = cv2.medianBlur(masked_img, 15) # find countours and draw boundaries. gray_image = cv2.cvtColor(masked_img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Draw contours: for contour in contours: area = cv2.contourArea(contour) cv2.drawContours(contour_img, contour, -1, (255, 255, 255), 5) masked_img = cv2.addWeighted(color_img, 0.6, masked_img, 0.4, 0) masked_img = cv2.bitwise_or(masked_img, contour_img) _, color_serialized = cv2.imencode(".tif", masked_img) self.element.entry_write("color_mask", {"data": color_serialized.tobytes()}, maxlen=30) time.sleep(max(0, (1 / PUBLISH_RATE) - (time.time() - start_time))) def get_masks(self): """ Gets the latest data from the realsense, preprocesses it and returns the segmentation masks, bounding boxes, and scores for each detected object. """ color_data = self.element.entry_read_n("realsense", "color", 1) depth_data = self.element.entry_read_n("realsense", "depth", 1) try: color_data = color_data[0]["data"] depth_data = depth_data[0]["data"] except IndexError or KeyError: raise Exception( "Could not get data. Is the realsense element running?") depth_img = cv2.imdecode(np.frombuffer(depth_data, dtype=np.uint16), -1) original_size = depth_img.shape[:2] depth_img = self.scale_and_square(depth_img, self.scaling_factor, self.input_size) depth_img = self.inpaint(depth_img) depth_img = self.normalize(depth_img) if self.mode == "both": gray_img = cv2.imdecode(np.frombuffer(color_data, dtype=np.uint16), 0) color_img = cv2.imdecode( np.frombuffer(color_data, dtype=np.uint16), 1) gray_img = self.scale_and_square(gray_img, self.scaling_factor, self.input_size) input_img = np.zeros((self.input_size, self.input_size, 3)) input_img[..., 0] = gray_img input_img[..., 1] = depth_img input_img[..., 2] = depth_img else: input_img = np.stack((depth_img, ) * 3, axis=-1) # Get results and unscale results = self.model.detect([input_img], verbose=0)[0] masks, rois = self.unscale(results, self.scaling_factor, original_size) if masks.ndim < 2 or results["scores"].size == 0: masks = None results["scores"] = None elif masks.ndim == 2: masks = np.expand_dims(masks, axis=-1) return results["scores"], masks, rois, color_img def segment(self, _): """ Command for getting the latest segmentation masks and returning the results. """ scores, masks, rois, color_img = self.get_masks() # Encoded masks in TIF format and package everything in dictionary encoded_masks = [] if masks is not None and scores is not None: for i in range(masks.shape[-1]): _, encoded_mask = cv2.imencode(".tif", masks[..., i]) encoded_masks.append(encoded_mask.tobytes()) response_data = { "rois": rois.tolist(), "scores": scores.tolist(), "masks": encoded_masks } else: response_data = {"rois": [], "scores": [], "masks": []} return Response(response_data, serialize=True)
class Picamera: def __init__(self, element_name, width, height, fps, retry_delay): self._width = width self._height = height self._fps = fps self._retry_delay = retry_delay self._status_is_running = False self._status_lock = Lock() # Init element self._element = Element(element_name) self._element.healthcheck_set(self.is_healthy) #self._element.command_add(command_name, command_func_ptr, timeout, serialize) # Run command loop thread = Thread(target=self._element.command_loop, daemon=True) thread.start() def is_healthy(self): # Reports whether the camera is connected or not try: self._status_lock.acquire() if self._status_is_running: return Response(err_code=0, err_str="Camera is good") else: return Response(err_code=1, err_str="Camera is not good") except: return Response(err_code=0, err_str="Could not reach thread") def run_camera_stream(self): while True: try: # try to open up camera self._element.log(LogLevel.INFO, "Opening PiCamera") self._camera = PiCamera() self._color_array = PiRGBArray(self._camera) # set camera configs self._camera.resolution = (self._width, self._height) self._camera.framerate = self._fps # allow the camera to warm up time.sleep(.5) try: self._status_lock.acquire() self._status_is_running = True finally: self._status_lock.release() self._element.log(LogLevel.INFO, "Picamera connected and streaming") while True: start_time = time.time() self._camera.capture(self._color_array, format = 'bgr') color_image = self._color_array.array #do some rotation here _, color_serialized = cv2.imencode(".tif", color_image) color_contract = ColorStreamContract(data=color_serialized.tobytes()) self._element.entry_write( ColorStreamContract.STREAM_NAME, color_contract.to_dict(), serialize=ColorStreamContract.SERIALIZE, maxlen=self._fps ) time.sleep(max(1 / self._fps - (time.time() - start_time),0)) self._color_array.truncate(0) except: self._element.log(LogLevel.INFO, "Camera threw exception: %s" % (sys.exc_info()[1])) finally: try: self._status_lock.acquire() self._status_is_running = False self._camera.close() finally: self._status_lock.release() time.sleep(self._retry_delay)
import cv2 import numpy as np import os import sys import time from atom import Element from atom.messages import LogLevel from PyQt5.QtWidgets import QApplication, QWidget, QComboBox, QLabel, QMainWindow, QToolBar, QPushButton, QSizePolicy from PyQt5.QtCore import Qt, QThread, pyqtSignal, pyqtSlot from PyQt5.QtGui import QPixmap, QImage from qimage2ndarray import array2qimage LOGO_PATH = "assets/logo.png" element = Element("stream-viewer") stream = "" class StreamThread(QThread): change_pixmap = pyqtSignal(QImage) max_size = 8192 hz = 30 img = None def run(self): """ Gets the latest data from the current stream and sends it to be displayed on the main window. """ global stream last_set = time.time() # tracks whether streaming was active in the last iteration of the while loop below