Ejemplo n.º 1
0
import atomap.api as am
import hyperspy.api as hs
import numpy as np
import os

path_to_data = os.path.join(os.path.dirname(__file__), "data")
os.chdir(path_to_data)

# Open the original PTO Junction dataset
image = hs.load("filtered_PTO_HAADF_STEM.hspy")
sampling = image.axes_manager[-1].scale  # nm/pix
units = image.axes_manager[-1].units
image.plot()

# Open the pre-made PTO atom lattice.
atom_lattice = am.load_atom_lattice_from_hdf5("Atom_Lattice.hdf5", False)
sublattice1 = atom_lattice.sublattice_list[0]  # Pb Sublattice
sublattice2 = atom_lattice.sublattice_list[1]  # Ti Sublattice
sublattice1.construct_zone_axes(atom_plane_tolerance=1)

# Set up parameters for plotting the strain, rotation, and c/a ratio maps:
zone_vector_index_A = 0
zone_vector_index_B = 1
# Note that sometimes the 0 and 1 axes are constructed first or second,
# so you may have to swap them.

filename = None  # Set to a string if you want to save the map
'''
You can use return_x_y_z=True to get the x,y, and strain/rotation/ratio
values also!
Check the documentation here: temul-toolkit.readthedocs.io
Ejemplo n.º 2
0
        my_path, 'line_monolayer.png'),
                                            overwrite=True)


def dd_line():
    zone = sublattice_B.zones_axis_average_distances[1]
    plane = sublattice_B.atom_planes_by_zone_vector[zone][-1]
    s_line = sublattice_B.get_atom_distance_difference_line_profile(
        zone, plane)
    s_line.plot()
    s_line._plot.signal_plot.figure.savefig(os.path.join(
        my_path, 'line_dd.png'),
                                            overwrite=True)


atom_lattice = am.load_atom_lattice_from_hdf5(
    os.path.join(my_path, 'fantasite.hdf5'))
sublattice_A = atom_lattice.sublattice_list[0]
sublattice_B = atom_lattice.sublattice_list[1]

plot_elli_maps()
plot_monolayer_map()
plot_atom_plane_monolayer_map()
plot_atom_dd()
plot_dd_plane()
plot_voronoi_integration(atom_lattice)
plot_watershed_integration(atom_lattice)
plot_angle_figs()
plot_al_zoom()
elli_line()
elli_line_errorbar()
plot_line_plane()
Ejemplo n.º 3
0
import atomap.api as am
import hyperspy.api as hs
import os

path_to_data = os.path.join(os.path.dirname(__file__), "data")
os.chdir(path_to_data)

# Open the PTO/SRO dataset
image = hs.load('Cropped_PTO-SRO_Aligned.hspy')

sampling = image.axes_manager[-1].scale  # nm/pix
units = image.axes_manager[-1].units
image.plot()

# Open the pre-made PTO-SRO atom lattice.
atom_lattice = am.load_atom_lattice_from_hdf5("Atom_Lattice_crop.hdf5")
sublattice1 = atom_lattice.sublattice_list[0]  # Pb-Sr Sublattice
sublattice2 = atom_lattice.sublattice_list[1]  # Ti-Ru Sublattice

# Plot the sublattice planes to see which zone_vector_index we use
sublattice2.construct_zone_axes(atom_plane_tolerance=1)
# sublattice2.plot_planes()

# Set up parameters for calculate_atom_plane_curvature
zone_vector_index = 0
atom_planes = (2, 6)  # chooses the starting and ending atom planes
vmin, vmax = 1, 2
cmap = 'bwr'  # see matplotlib and colorcet for more colormaps
title = 'Curvature Map'
filename = None  # Set to a string if you want to save the map
Ejemplo n.º 4
0
            transparent=True,
            frameon=False,
            bbox_inches='tight',
            pad_inches=None,
            dpi=300,
            labels=False)
plt.close()

from temul.model_refiner import Model_Refiner
import atomap.api as am
import temul.example_data as example_data

s_original = example_data.load_Se_implanted_MoS2_data()
real_sampling = s_original.axes_manager[-1].scale

atom_lattice = am.load_atom_lattice_from_hdf5('Atom_Lattice_max.hdf5')
sub1 = atom_lattice.sublattice_list[0]
sub2 = atom_lattice.sublattice_list[1]
sub3 = atom_lattice.sublattice_list[2]
''' Refine the Sublattice elements '''
element_list_sub1 = ['Mo_0', 'Mo_1', 'Mo_1.S_1', 'Mo_1.Se_1', 'Mo_2']
element_list_sub2 = ['S_0', 'S_1', 'S_2', 'Se_1', 'Se_1.S_1', 'Se_2']
element_list_sub3 = [
    'H_0',
    'S_1',
    'Se_1',
    'Mo_1',
]

sub_dict = {
    sub1: element_list_sub1,