Ejemplo n.º 1
0
    def run_task(self, fw_spec):

        from pymatgen.analysis.eos import EOS

        tag = self["tag"]
        db_file = env_chk(self.get("db_file"), fw_spec)
        summary_dict = {"eos": self["eos"]}

        mmdb = MMVaspDb.from_db_file(db_file, admin=True)
        # get the optimized structure
        d = mmdb.collection.find_one({"task_label": "{} structure optimization".format(tag)})
        structure = Structure.from_dict(d["calcs_reversed"][-1]["output"]['structure'])
        summary_dict["structure"] = structure.as_dict()

        # get the data(energy, volume, force constant) from the deformation runs
        docs = mmdb.collection.find({"task_label": {"$regex": "{} bulk_modulus*".format(tag)},
                                     "formula_pretty": structure.composition.reduced_formula})
        energies = []
        volumes = []
        for d in docs:
            s = Structure.from_dict(d["calcs_reversed"][-1]["output"]['structure'])
            energies.append(d["calcs_reversed"][-1]["output"]['energy'])
            volumes.append(s.volume)
        summary_dict["energies"] = energies
        summary_dict["volumes"] = volumes

        # fit the equation of state
        eos = EOS(self["eos"])
        eos_fit = eos.fit(volumes, energies)
        summary_dict["results"] = dict(eos_fit.results)

        with open("bulk_modulus.json", "w") as f:
            f.write(json.dumps(summary_dict, default=DATETIME_HANDLER))

        logger.info("BULK MODULUS CALCULATION COMPLETE")
Ejemplo n.º 2
0
    def run_task(self, fw_spec):

        tag = self["tag"]
        db_file = env_chk(self.get("db_file"), fw_spec)
        t_step = self.get("t_step", 10)
        t_min = self.get("t_min", 0)
        t_max = self.get("t_max", 1000)
        mesh = self.get("mesh", [20, 20, 20])
        eos = self.get("eos", "vinet")
        qha_type = self.get("qha_type", "debye_model")
        pressure = self.get("pressure", 0.0)
        gibbs_summary_dict = {}

        mmdb = MMVaspDb.from_db_file(db_file, admin=True)
        # get the optimized structure
        d = mmdb.collection.find_one({"task_label": "{} structure optimization".format(tag)})
        structure = Structure.from_dict(d["calcs_reversed"][-1]["output"]['structure'])
        gibbs_summary_dict["structure"] = structure.as_dict()

        # get the data(energy, volume, force constant) from the deformation runs
        docs = mmdb.collection.find({"task_label": {"$regex": "{} gibbs*".format(tag)},
                                     "formula_pretty": structure.composition.reduced_formula})
        energies = []
        volumes = []
        force_constants = []
        for d in docs:
            s = Structure.from_dict(d["calcs_reversed"][-1]["output"]['structure'])
            energies.append(d["calcs_reversed"][-1]["output"]['energy'])
            if qha_type not in ["debye_model"]:
                force_constants.append(d["calcs_reversed"][-1]["output"]['force_constants'])
            volumes.append(s.volume)
        gibbs_summary_dict["energies"] = energies
        gibbs_summary_dict["volumes"] = volumes
        if qha_type not in ["debye_model"]:
            gibbs_summary_dict["force_constants"] = force_constants

        G, T = None, None
        # use debye model
        if qha_type in ["debye_model"]:

            from atomate.tools.analysis import get_debye_model_gibbs

            G, T = get_debye_model_gibbs(energies, volumes, structure, t_min, t_step, t_max, eos,
                                         pressure)

        # use the phonopy interface
        else:

            from atomate.tools.analysis import get_phonopy_gibbs

            G, T = get_phonopy_gibbs(energies, volumes, force_constants, structure, t_min, t_step,
                                     t_max, mesh, eos, pressure)

        gibbs_summary_dict["G"] = G
        gibbs_summary_dict["T"] = T

        with open("gibbs.json", "w") as f:
            f.write(json.dumps(gibbs_summary_dict, default=DATETIME_HANDLER))
        logger.info("GIBBS FREE ENERGY CALCULATION COMPLETE")
Ejemplo n.º 3
0
    def run_task(self, fw_spec):
        nm_norms = np.array(fw_spec["normalmodes"]["norms"])
        nm_eigenvals = np.array(fw_spec["normalmodes"]["eigenvals"])
        structure = fw_spec["normalmodes"]["structure"]
        masses = np.array([site.specie.data['Atomic mass'] for site in structure])
        # the eigenvectors read from vasprun.xml are not divided by sqrt(M_i)
        nm_norms = nm_norms / np.sqrt(masses)

        # To get the actual eigenvals, the values read from vasprun.xml must be multiplied by -1.
        # frequency_i = sqrt(-e_i)
        # To convert the frequency to THZ: multiply sqrt(-e_i) by 15.633
        # To convert the frequency to cm^-1: multiply sqrt(-e_i) by 82.995
        nm_frequencies = np.sqrt(np.abs(nm_eigenvals)) * 82.995  # cm^-1

        d = {"structure": structure.as_dict(),
             "normalmodes": {"eigenvals": fw_spec["normalmodes"]["eigenvals"],
                             "eigenvecs": fw_spec["normalmodes"]["eigenvecs"]
                             },
             "frequencies": nm_frequencies.tolist()
             }

        mode_disps = fw_spec["raman_epsilon"].keys()
        # store the displacement & epsilon for each mode in a dictionary
        modes_eps_dict = defaultdict(list)
        for md in mode_disps:
            modes_eps_dict[fw_spec["raman_epsilon"][md]["mode"]].append(
                [fw_spec["raman_epsilon"][md]["displacement"],
                 fw_spec["raman_epsilon"][md]["epsilon"]])

        # raman tensor = finite difference derivative of epsilon wrt displacement.
        raman_tensor_dict = {}
        scale = np.sqrt(structure.volume/2.0) / 4.0 / np.pi
        for k, v in modes_eps_dict.items():
            raman_tensor = (np.array(v[0][1]) - np.array(v[1][1])) / (v[0][0] - v[1][0])
            # frequency in cm^-1
            omega = nm_frequencies[k]
            if nm_eigenvals[k] > 0:
                logger.warn("Mode: {} is UNSTABLE. Freq(cm^-1) = {}".format(k, -omega))
            raman_tensor = scale * raman_tensor * np.sum(nm_norms[k]) / np.sqrt(omega)
            raman_tensor_dict[str(k)] = raman_tensor.tolist()

        d["raman_tensor"] = raman_tensor_dict
        d["state"] = "successful"

        # store the results
        db_file = env_chk(self.get("db_file"), fw_spec)
        if not db_file:
            with open("raman.json", "w") as f:
                f.write(json.dumps(d, default=DATETIME_HANDLER))
        else:
            db = MMVaspDb.from_db_file(db_file, admin=True)
            db.collection = db.db["raman"]
            db.collection.insert_one(d)
            logger.info("RAMAN TENSOR CALCULATION COMPLETE")
        logger.info("The frequencies are in the units of cm^-1")
        logger.info("To convert the frequency to THz: multiply by 0.1884")
        return FWAction()
Ejemplo n.º 4
0
    def run_task(self, fw_spec):

        # Get optimized structure
        # TODO: will this find the correct path if the workflow is rerun from the start?
        optimize_loc = fw_spec["calc_locs"][0]["path"]
        logger.info("PARSING INITIAL OPTIMIZATION DIRECTORY: {}".format(optimize_loc))
        drone = VaspDrone()
        optimize_doc = drone.assimilate(optimize_loc)
        opt_struct = Structure.from_dict(optimize_doc["calcs_reversed"][0]["output"]["structure"])

        d = {"analysis": {}, "deformation_tasks": fw_spec["deformation_tasks"],
             "initial_structure": self['structure'].as_dict(),
             "optimized_structure": opt_struct.as_dict()}
        if fw_spec.get("tags",None):
            d["tags"] = fw_spec["tags"]
        dtypes = fw_spec["deformation_tasks"].keys()
        defos = [fw_spec["deformation_tasks"][dtype]["deformation_matrix"]
                 for dtype in dtypes]
        stresses = [fw_spec["deformation_tasks"][dtype]["stress"] for dtype in dtypes]
        stress_dict = {IndependentStrain(defo) : Stress(stress) for defo, stress
                       in zip(defos, stresses)}

        logger.info("ANALYZING STRESS/STRAIN DATA")
        # DETERMINE IF WE HAVE 6 "UNIQUE" deformations
        if len(set([de[:3] for de in dtypes])) == 6:
            # Perform Elastic tensor fitting and analysis
            result = ElasticTensor.from_stress_dict(stress_dict)
            d["elastic_tensor"] = result.voigt.tolist()
            kg_average = result.kg_average
            d.update({"K_Voigt": kg_average[0], "G_Voigt": kg_average[1],
                      "K_Reuss": kg_average[2], "G_Reuss": kg_average[3],
                      "K_Voigt_Reuss_Hill": kg_average[4],
                      "G_Voigt_Reuss_Hill": kg_average[5]})
            d["universal_anisotropy"] = result.universal_anisotropy
            d["homogeneous_poisson"] = result.homogeneous_poisson

        else:
            raise ValueError("Fewer than 6 unique deformations")

        d["state"] = "successful"

        # Save analysis results in json or db
        db_file = env_chk(self.get('db_file'), fw_spec)
        if not db_file:
            with open("elasticity.json", "w") as f:
                f.write(json.dumps(d, default=DATETIME_HANDLER))
        else:
            db = MMVaspDb.from_db_file(db_file, admin=True)
            db.collection = db.db["elasticity"]
            db.collection.insert_one(d)
            logger.info("ELASTIC ANALYSIS COMPLETE")
        return FWAction()
Ejemplo n.º 5
0
    def run_task(self, fw_spec):
        btrap_dir = os.path.join(os.getcwd(), "boltztrap")
        bta = BoltztrapAnalyzer.from_files(btrap_dir)
        d = bta.as_dict()
        d["boltztrap_dir"] = btrap_dir

        # trim the output
        for x in ['cond', 'seebeck', 'kappa', 'hall', 'mu_steps',
                  'mu_doping', 'carrier_conc']:
            del d[x]

        if not self.get("hall_doping"):
            del d["hall_doping"]

        d["scissor"] = bta.intrans["scissor"]

        # add the structure
        bandstructure_dir = os.getcwd()
        v, o = get_vasprun_outcar(bandstructure_dir, parse_eigen=False,
                                  parse_dos=False)
        structure = v.final_structure
        d["structure"] = structure.as_dict()
        d.update(get_meta_from_structure(structure))
        d["bandstructure_dir"] = bandstructure_dir

        # add the spacegroup
        sg = SpacegroupAnalyzer(Structure.from_dict(d["structure"]), 0.1)
        d["spacegroup"] = {"symbol": sg.get_space_group_symbol(),
                           "number": sg.get_space_group_number(),
                           "point_group": sg.get_point_group_symbol(),
                           "source": "spglib",
                           "crystal_system": sg.get_crystal_system(),
                           "hall": sg.get_hall()}

        d["created_at"] = datetime.utcnow()

        db_file = env_chk(self.get('db_file'), fw_spec)

        if not db_file:
            with open(os.path.join(btrap_dir, "boltztrap.json"), "w") as f:
                f.write(json.dumps(d, default=DATETIME_HANDLER))
        else:
            mmdb = MMVaspDb.from_db_file(db_file, admin=True)

            # dos gets inserted into GridFS
            dos = json.dumps(d["dos"], cls=MontyEncoder)
            fsid, compression = mmdb.insert_gridfs(
                dos, collection="dos_boltztrap_fs", compress=True)
            d["dos_boltztrap_fs_id"] = fsid
            del d["dos"]

            mmdb.db.boltztrap.insert(d)
Ejemplo n.º 6
0
    def run_task(self, fw_spec):

        from atomate.tools.analysis import get_phonopy_thermal_expansion

        tag = self["tag"]
        db_file = env_chk(self.get("db_file"), fw_spec)
        t_step = self.get("t_step", 10)
        t_min = self.get("t_min", 0)
        t_max = self.get("t_max", 1000)
        mesh = self.get("mesh", [20, 20, 20])
        eos = self.get("eos", "vinet")
        pressure = self.get("pressure", 0.0)
        summary_dict = {}

        mmdb = MMVaspDb.from_db_file(db_file, admin=True)
        # get the optimized structure
        d = mmdb.collection.find_one({"task_label": "{} structure optimization".format(tag)})
        structure = Structure.from_dict(d["calcs_reversed"][-1]["output"]['structure'])
        summary_dict["structure"] = structure.as_dict()

        # get the data(energy, volume, force constant) from the deformation runs
        docs = mmdb.collection.find({"task_label": {"$regex": "{} thermal_expansion*".format(tag)},
                                     "formula_pretty": structure.composition.reduced_formula})
        energies = []
        volumes = []
        force_constants = []
        for d in docs:
            s = Structure.from_dict(d["calcs_reversed"][-1]["output"]['structure'])
            energies.append(d["calcs_reversed"][-1]["output"]['energy'])
            volumes.append(s.volume)
            force_constants.append(d["calcs_reversed"][-1]["output"]['force_constants'])
        summary_dict["energies"] = energies
        summary_dict["volumes"] = volumes
        summary_dict["force_constants"] = force_constants

        alpha, T = get_phonopy_thermal_expansion(energies, volumes, force_constants, structure,
                                                 t_min, t_step, t_max, mesh, eos, pressure)

        summary_dict["alpha"] = alpha
        summary_dict["T"] = T

        with open("thermal_expansion.json", "w") as f:
            f.write(json.dumps(summary_dict, default=DATETIME_HANDLER))

        logger.info("THERMAL EXPANSION COEFF CALCULATION COMPLETE")
Ejemplo n.º 7
0
    def run_task(self, fw_spec):
        # get the directory that contains the VASP dir to parse
        calc_dir = os.getcwd()
        if "calc_dir" in self:
            calc_dir = self["calc_dir"]
        elif self.get("calc_loc"):
            calc_dir = get_calc_loc(self["calc_loc"], fw_spec["calc_locs"])["path"]

        # parse the VASP directory
        logger.info("PARSING DIRECTORY: {}".format(calc_dir))
        # get the database connection
        db_file = env_chk(self.get('db_file'), fw_spec)

        drone = VaspDrone(additional_fields=self.get("additional_fields"),
                          parse_dos=self.get("parse_dos", False), compress_dos=1,
                          bandstructure_mode=self.get("bandstructure_mode", False), compress_bs=1)

        # assimilate (i.e., parse)
        task_doc = drone.assimilate(calc_dir)

        # Check for additional fields to add in the fw_spec
        if self.get("fw_spec_field"):
            task_doc.update(fw_spec[self.get("fw_spec_field")])

        # db insertion
        if not db_file:
            with open("task.json", "w") as f:
                f.write(json.dumps(task_doc, default=DATETIME_HANDLER))
        else:
            mmdb = MMVaspDb.from_db_file(db_file, admin=True)

            # insert dos into GridFS
            if self.get("parse_dos") and "calcs_reversed" in task_doc:
                for idx, x in enumerate(task_doc["calcs_reversed"]):
                    if "dos" in task_doc["calcs_reversed"][idx]:
                        if idx == 0:  # only store most recent DOS
                            dos = json.dumps(task_doc["calcs_reversed"][idx]["dos"], cls=MontyEncoder)
                            gfs_id, compression_type = mmdb.insert_gridfs(dos, "dos_fs")
                            task_doc["calcs_reversed"][idx]["dos_compression"] = compression_type
                            task_doc["calcs_reversed"][idx]["dos_fs_id"] = gfs_id
                        del task_doc["calcs_reversed"][idx]["dos"]

            # insert band structure into GridFS
            if self.get("bandstructure_mode") and "calcs_reversed" in task_doc:
                for idx, x in enumerate(task_doc["calcs_reversed"]):
                    if "bandstructure" in task_doc["calcs_reversed"][idx]:
                        if idx == 0:  # only store most recent band structure
                            bs = json.dumps(task_doc["calcs_reversed"][idx]["bandstructure"], cls=MontyEncoder)
                            gfs_id, compression_type = mmdb.insert_gridfs(bs, "bandstructure_fs")
                            task_doc["calcs_reversed"][idx]["bandstructure_compression"] = compression_type
                            task_doc["calcs_reversed"][idx]["bandstructure_fs_id"] = gfs_id
                        del task_doc["calcs_reversed"][idx]["bandstructure"]

            # insert the task document
            t_id = mmdb.insert(task_doc)

            logger.info("Finished parsing with task_id: {}".format(t_id))

        if self.get("defuse_unsuccessful", True):
            defuse_children = (task_doc["state"] != "successful")
        else:
            defuse_children = False

        return FWAction(stored_data={"task_id": task_doc.get("task_id", None)},
                        defuse_children=defuse_children)