Ejemplo n.º 1
0
def relax_system(lammps_command: str,
                 system: am.System,
                 potential: lmp.Potential,
                 mpi_command: Optional[str] = None,
                 etol: float = 0.0,
                 ftol: float = 0.0,
                 maxiter: int = 10000,
                 maxeval: int = 100000,
                 dmax: float = uc.set_in_units(0.01, 'angstrom'),
                 lammps_date: Optional[datetime.date] = None) -> dict:
    """
    Sets up and runs the min.in LAMMPS script for performing an energy/force
    minimization to relax a system.
    
    Parameters
    ----------
    lammps_command :str
        Command for running LAMMPS.
    system : atomman.System
        The system to perform the calculation on.
    potential : atomman.lammps.Potential
        The LAMMPS implemented potential to use.
    mpi_command : str, optional
        The MPI command for running LAMMPS in parallel.  If not given, LAMMPS
        will run serially.
    etol : float, optional
        The energy tolerance for the structure minimization. This value is
        unitless. (Default is 0.0).
    ftol : float, optional
        The force tolerance for the structure minimization. This value is in
        units of force. (Default is 0.0).
    maxiter : int, optional
        The maximum number of minimization iterations to use (default is 
        10000).
    maxeval : int, optional
        The maximum number of minimization evaluations to use (default is 
        100000).
    dmax : float, optional
        The maximum distance in length units that any atom is allowed to relax
        in any direction during a single minimization iteration (default is
        0.01 Angstroms).
    lammps_date : datetime.date or None, optional
        The date version of the LAMMPS executable.  If None, will be identified
        from the lammps_command (default is None).

    Returns
    -------
    dict
        Dictionary of results consisting of keys:
        
        - **'logfile'** (*str*) - The name of the LAMMPS log file.
        - **'initialdatafile'** (*str*) - The name of the LAMMPS data file
          used to import an inital configuration.
        - **'initialdumpfile'** (*str*) - The name of the LAMMPS dump file
          corresponding to the inital configuration.
        - **'finaldumpfile'** (*str*) - The name of the LAMMPS dump file
          corresponding to the relaxed configuration.
        - **'potentialenergy'** (*float*) - The total potential energy of
          the relaxed system.
    """

    # Ensure all atoms are within the system's box
    system.wrap()

    # Get lammps units
    lammps_units = lmp.style.unit(potential.units)

    #Get lammps version date
    if lammps_date is None:
        lammps_date = lmp.checkversion(lammps_command)['date']

    # Define lammps variables
    lammps_variables = {}
    system_info = system.dump('atom_data', f='system.dat', potential=potential)
    lammps_variables['atomman_system_pair_info'] = system_info
    lammps_variables['etol'] = etol
    lammps_variables['ftol'] = uc.get_in_units(ftol, lammps_units['force'])
    lammps_variables['maxiter'] = maxiter
    lammps_variables['maxeval'] = maxeval
    lammps_variables['dmax'] = uc.get_in_units(dmax, lammps_units['length'])

    # Set dump_modify format based on dump_modify_version
    if lammps_date < datetime.date(2016, 8, 3):
        lammps_variables[
            'dump_modify_format'] = '"%i %i %.13e %.13e %.13e %.13e"'
    else:
        lammps_variables['dump_modify_format'] = 'float %.13e'

    # Write lammps input script
    template_file = 'min.template'
    lammps_script = 'min.in'
    template = read_calc_file('iprPy.calculation.surface_energy_static',
                              'min.template')
    with open(lammps_script, 'w') as f:
        f.write(filltemplate(template, lammps_variables, '<', '>'))

    # Run LAMMPS
    output = lmp.run(lammps_command,
                     script_name=lammps_script,
                     mpi_command=mpi_command)

    # Extract output values
    thermo = output.simulations[-1]['thermo']
    results = {}
    results['logfile'] = 'log.lammps'
    results['initialdatafile'] = 'system.dat'
    results['initialdumpfile'] = 'atom.0'
    results['finaldumpfile'] = 'atom.%i' % thermo.Step.values[-1]
    results['potentialenergy'] = uc.set_in_units(thermo.PotEng.values[-1],
                                                 lammps_units['energy'])

    return results
Ejemplo n.º 2
0
def relax_static(lammps_command: str,
                 system: am.System,
                 potential: lmp.Potential,
                 mpi_command: Optional[str] = None,
                 p_xx: float = 0.0,
                 p_yy: float = 0.0,
                 p_zz: float = 0.0,
                 p_xy: float = 0.0,
                 p_xz: float = 0.0,
                 p_yz: float = 0.0,
                 dispmult: float = 0.0,
                 etol: float = 0.0,
                 ftol: float = 0.0,
                 maxiter: int = 100000,
                 maxeval: int = 1000000,
                 dmax: float = uc.set_in_units(0.01, 'angstrom'),
                 maxcycles: int = 100,
                 ctol: float = 1e-10) -> dict:
    """
    Repeatedly runs the ELASTIC example distributed with LAMMPS until box
    dimensions converge within a tolerance.
    
    Parameters
    ----------
    lammps_command :str
        Command for running LAMMPS.
    system : atomman.System
        The system to perform the calculation on.
    potential : atomman.lammps.Potential
        The LAMMPS implemented potential to use.
    mpi_command : str, optional
        The MPI command for running LAMMPS in parallel.  If not given, LAMMPS
        will run serially.
    p_xx : float, optional
        The value to relax the x tensile pressure component to (default is
        0.0).
    p_yy : float, optional
        The value to relax the y tensile pressure component to (default is
        0.0).
    p_zz : float, optional
        The value to relax the z tensile pressure component to (default is
        0.0).
    p_xy : float, optional
        The value to relax the xy shear pressure component to (default is
        0.0).
    p_xz : float, optional
        The value to relax the xz shear pressure component to (default is
        0.0).
    p_yz : float, optional
        The value to relax the yz shear pressure component to (default is
        0.0).
    dispmult : float, optional
        Multiplier for applying a random displacement to all atomic positions
        prior to relaxing. Default value is 0.0.
    etol : float, optional
        The energy tolerance for the structure minimization. This value is
        unitless. (Default is 0.0).
    ftol : float, optional
        The force tolerance for the structure minimization. This value is in
        units of force. (Default is 0.0).
    maxiter : int, optional
        The maximum number of minimization iterations to use (default is 10000).
    maxeval : int, optional
        The maximum number of minimization evaluations to use (default is 
        100000).
    dmax : float, optional
        The maximum distance in length units that any atom is allowed to relax
        in any direction during a single minimization iteration (default is
        0.01 Angstroms).
    pressure_unit : str, optional
        The unit of pressure to calculate the elastic constants in (default is
        'GPa').
    maxcycles : int, optional
        The maximum number of times the minimization algorithm is called.
        Default value is 100.
    ctol : float, optional
        The relative tolerance used to determine if the lattice constants have
        converged (default is 1e-10).
    
    Returns
    -------
    dict
        Dictionary of results consisting of keys:
        
        - **'dumpfile_initial'** (*str*) - The name of the initial dump file
          created.
        - **'symbols_initial'** (*list*) - The symbols associated with the
          initial dump file.
        - **'dumpfile_final'** (*str*) - The name of the final dump file
          created.
        - **'symbols_final'** (*list*) - The symbols associated with the final
          dump file.
        - **'lx'** (*float*) - The relaxed lx box length.
        - **'ly'** (*float*) - The relaxed ly box length.
        - **'lz'** (*float*) - The relaxed lz box length.
        - **'xy'** (*float*) - The relaxed xy box tilt.
        - **'xz'** (*float*) - The relaxed xz box tilt.
        - **'yz'** (*float*) - The relaxed yz box tilt.
        - **'E_pot'** (*float*) - The potential energy per atom for the final
          configuration.
        - **'measured_pxx'** (*float*) - The measured x tensile pressure
          component for the final configuration.
        - **'measured_pyy'** (*float*) - The measured y tensile pressure
          component for the final configuration.
        - **'measured_pzz'** (*float*) - The measured z tensile pressure
          component for the final configuration.
        - **'measured_pxy'** (*float*) - The measured xy shear pressure
          component for the final configuration.
        - **'measured_pxz'** (*float*) - The measured xz shear pressure
          component for the final configuration.
        - **'measured_pyz'** (*float*) - The measured yz shear pressure
          component for the final configuration.
    """

    # Get lammps units
    lammps_units = lmp.style.unit(potential.units)

    # Get lammps version date
    lammps_date = lmp.checkversion(lammps_command)['date']

    # Save initial configuration as a dump file
    system.dump('atom_dump', f='initial.dump')

    # Apply small random distortions to atoms
    system.atoms.pos += dispmult * np.random.rand(
        *system.atoms.pos.shape) - dispmult / 2

    # Initialize parameters
    old_vects = system.box.vects
    converged = False

    # Run minimizations up to maxcycles times
    for cycle in range(maxcycles):

        # Define lammps variables
        lammps_variables = {}
        system_info = system.dump('atom_data',
                                  f='init.dat',
                                  potential=potential)
        lammps_variables['atomman_system_pair_info'] = system_info

        lammps_variables['p_xx'] = uc.get_in_units(p_xx,
                                                   lammps_units['pressure'])
        lammps_variables['p_yy'] = uc.get_in_units(p_yy,
                                                   lammps_units['pressure'])
        lammps_variables['p_zz'] = uc.get_in_units(p_zz,
                                                   lammps_units['pressure'])
        lammps_variables['p_xy'] = uc.get_in_units(p_xy,
                                                   lammps_units['pressure'])
        lammps_variables['p_xz'] = uc.get_in_units(p_xz,
                                                   lammps_units['pressure'])
        lammps_variables['p_yz'] = uc.get_in_units(p_yz,
                                                   lammps_units['pressure'])
        lammps_variables['etol'] = etol
        lammps_variables['ftol'] = uc.get_in_units(ftol, lammps_units['force'])
        lammps_variables['maxiter'] = maxiter
        lammps_variables['maxeval'] = maxeval
        lammps_variables['dmax'] = uc.get_in_units(dmax,
                                                   lammps_units['length'])

        # Set dump_keys based on atom_style
        if potential.atom_style in ['charge']:
            lammps_variables['dump_keys'] = 'id type q x y z c_peatom'
        else:
            lammps_variables['dump_keys'] = 'id type x y z c_peatom'

        # Set dump_modify_format based on lammps_date
        if lammps_date < datetime.date(2016, 8, 3):
            if potential.atom_style in ['charge']:
                lammps_variables[
                    'dump_modify_format'] = '"%d %d %.13e %.13e %.13e %.13e %.13e"'
            else:
                lammps_variables[
                    'dump_modify_format'] = '"%d %d %.13e %.13e %.13e %.13e"'
        else:
            lammps_variables['dump_modify_format'] = 'float %.13e'

        # Write lammps input script
        lammps_script = 'minbox.in'
        template = read_calc_file('iprPy.calculation.relax_static',
                                  'minbox.template')
        with open(lammps_script, 'w') as f:
            f.write(filltemplate(template, lammps_variables, '<', '>'))

        # Run LAMMPS and extract thermo data
        logfile = 'log-' + str(cycle) + '.lammps'
        output = lmp.run(lammps_command,
                         script_name=lammps_script,
                         mpi_command=mpi_command,
                         logfile=logfile)
        thermo = output.simulations[0]['thermo']

        # Clean up dump files
        Path('0.dump').unlink()
        last_dump_file = str(thermo.Step.values[-1]) + '.dump'
        renamed_dump_file = 'relax_static-' + str(cycle) + '.dump'
        shutil.move(last_dump_file, renamed_dump_file)

        # Load relaxed system
        system = am.load('atom_dump',
                         renamed_dump_file,
                         symbols=system.symbols)

        # Test if box dimensions have converged
        if np.allclose(old_vects, system.box.vects, rtol=ctol, atol=0):
            converged = True
            break
        else:
            old_vects = system.box.vects

    # Check for convergence
    if converged is False:
        raise RuntimeError('Failed to converge after ' + str(maxcycles) +
                           ' cycles')

    # Zero out near-zero tilt factors
    lx = system.box.lx
    ly = system.box.ly
    lz = system.box.lz
    xy = system.box.xy
    xz = system.box.xz
    yz = system.box.yz
    if np.isclose(xy / ly, 0.0, rtol=0.0, atol=1e-10):
        xy = 0.0
    if np.isclose(xz / lz, 0.0, rtol=0.0, atol=1e-10):
        xz = 0.0
    if np.isclose(yz / lz, 0.0, rtol=0.0, atol=1e-10):
        yz = 0.0
    system.box.set(lx=lx, ly=ly, lz=lz, xy=xy, xz=xz, yz=yz)
    system.wrap()

    # Build results_dict
    results_dict = {}
    results_dict['dumpfile_initial'] = 'initial.dump'
    results_dict['symbols_initial'] = system.symbols
    results_dict['dumpfile_final'] = renamed_dump_file
    results_dict['symbols_final'] = system.symbols
    results_dict['E_pot'] = uc.set_in_units(
        thermo.PotEng.values[-1] / system.natoms, lammps_units['energy'])

    results_dict['lx'] = uc.set_in_units(lx, lammps_units['length'])
    results_dict['ly'] = uc.set_in_units(ly, lammps_units['length'])
    results_dict['lz'] = uc.set_in_units(lz, lammps_units['length'])
    results_dict['xy'] = uc.set_in_units(xy, lammps_units['length'])
    results_dict['xz'] = uc.set_in_units(xz, lammps_units['length'])
    results_dict['yz'] = uc.set_in_units(yz, lammps_units['length'])

    results_dict['measured_pxx'] = uc.set_in_units(thermo.Pxx.values[-1],
                                                   lammps_units['pressure'])
    results_dict['measured_pyy'] = uc.set_in_units(thermo.Pyy.values[-1],
                                                   lammps_units['pressure'])
    results_dict['measured_pzz'] = uc.set_in_units(thermo.Pzz.values[-1],
                                                   lammps_units['pressure'])
    results_dict['measured_pxy'] = uc.set_in_units(thermo.Pxy.values[-1],
                                                   lammps_units['pressure'])
    results_dict['measured_pxz'] = uc.set_in_units(thermo.Pxz.values[-1],
                                                   lammps_units['pressure'])
    results_dict['measured_pyz'] = uc.set_in_units(thermo.Pyz.values[-1],
                                                   lammps_units['pressure'])

    return results_dict